No guarantee for correctness, use at own risk.

Trigonometric Functions

sinz=eizeiz2i,cosz=eiz+eiz2,tanz=ieizeizeiz+eiz;

f(x)=sinx
 
f(x)=cosx
 
f(x)=tanx
 
f(x)=cscx
 
f(x)=secx
 
f(x)=cotx
 
θsin(θ)cos(θ)tan(θ)csc(θ)sec(θ)cot(θ)
π6=3012323322333
π3=6032123233233
π4=4522221221
π12=156246+24236+2622+3
π8=22.52222+22214+224222+1
π10=1851410+25452555+1102555+25
π5=36102545+1452510+255515+255

sin(x)=sinx,cos(x)=cosx,tan(x)=tanx;

sin(x±π)=sinx,cos(x±π)=cosx,tan(x±π)=tanx;sin(πx)=sinx,cos(πx)=cosx,tan(πx)=tanx;

sin(x±π2)=±cosx,cos(x±π2)=sinx,tan(x±π2)=cotx;sin(π2x)=cosx,cos(π2x)=sinx,tan(π2x)=cotx;

sin(x±π4)=22(sinx±cosx),cos(x±π4)=22(cosxsinx),tan(x±π4)=sinx±cosxcosxsinx=tanx±11tanx;

sin(π4x)=22(cosxsinx),cos(π4x)=22(cosx+sinx),tan(π4x)=1tanx1+tanx;

sin2x+cos2x=1,sec2xtan2x=1,csc2xcot2x=1;

sin(x±y)=sinxcosy±cosxsiny,cos(x±y)=cosxcosysinxsiny,tan(x±y)=tanx±tany1tanxtany,cot(x±y)=cotxcoty1coty±cotx;

sin2x=2sinxcosx,cos2x=cos2xsin2x2cos2x112sin2x,tan2x=2tanx1tan2x,cot2x=cot2x12cotx;

sin3x=3sinx4sin3x3sinxcos2xsin3x4sinxcos2xsinx,cos3x=4cos3x3cosxcos3x3cosxsin2xcosx4cosxsin2x,tan3x=3tanxtan3x13tan2x;

sin(nx)=k=0(n2k+1)(1)ksin2k+1xcosn(2k+1)x,cos(nx)=k=02kn(n2k)(1)ksin2kxcosn2kx,tan(nx)=k=0(n2k+1)(1)ktan2k+1xk=02kn(n2k)(1)ktan2kx;

cos(nθ)+isin(nθ)=(cosθ+isinθ)n,   [cos(nθ)sin(nθ)]=[sinθ]n[10];

sin2x2=1cosx2,cos2x2=1+cosx2,tan2x2=1cosx1+cosx;sin2x=1cos2x2,cos2x=1+cos2x2;tan2x=1cos2x1+cos2x;

sinxcosy=sin(x+y)+sin(xy)2;sinxsiny=cos(xy)cos(x+y)2,cosxcosy=cos(x+y)+cos(xy)2;

sinx±siny=2sin(x±y2)cos(xy2);cosx+cosy=2cos(x+y2)cos(xy2),cosxcosy=2sin(x+y2)sin(xy2);

sinx+cosy=2sin(x+y+π22)sin(xy+π22),sinxcosy=2cos(x+y+π22)cos(xy+π22);


Inverse Trigonometric Functions

sin1(z)=iln(iz+1z2),cos1(z)=iln(z±z21),tan1(z)=12iln(1+iz1iz),atan2(y,x)=12iln(x+yixyi);

f(x)=sin1x
 
f(x)=cos1x
 
f(x)=tan1x
 
f(x)=cot1x
 
f(x)=sec1x
 
f(x)=csc1x

sin1(x)=sin1(x),tan1(x)=tan1(x),csc1(x)=csc1(x),atan2(y,x)=atan2(y,x)atan2(y,x)=atan2(y,x);

csc1x=sin1(1x),sec1x=cos1(1x);tan1x=cot1(1x) (x>0);sin1x+cos1x=π2,tan1x+cot1x=π2,sec1x+csc1x=π2;

atan2(y,x)=tan1(yx)tan1(yx)+πtan1(yx)ππ2π2x>0x<0, y0x<0, y<0x=0, y>0x=0, y<0=cot1(xy)cot1(xy)π0πy>0y<0y=0, x>0y=0, x<0=2tan1(yx2+y2+x)=2tan1(x2+y2xy);

asin(kx)+bcos(kx)=a2+b2cos(kxatan2(a,b))=a2+b2sin(kx+atan2(b,a));

sin1(x)=cos1(1x2)=tan1(x1x2),cos1(x)=sin1(1x2)=tan1(1x2x);(0<x<1)

sin(cos1x)=1x2,sin(tan1x)=x1+x2,cos(sin1x)=1x2,cos(tan1x)=11+x2,tan(cos1x)=1x2x,tan(sin1x)=x1x2;

cos(atan2(y,x))=xx2+y2,sin(atan2(y,x))=yx2+y2;tan1(x)±tan1(y)=atan2(x±y,1xy);

tan(atan2(y,x))=yx,cot(atan2(y,x))=xy;atan2(sinx,cosx)=x;  (π<x<π)

 

 

 

 

sin1(sin(x))={x,sgn(x)πx,|x|<π2π2<|x|<3π2,cos1(sin(x))={π2x,xsgn(x)π+π2,|x|<π2π2<|x|<3π2,sin1(cos(x))={π2|x|,|x|3π2,|x|<ππ<|x|<2π,cos1(cos(x))={|x|,2π|x|,|x|<ππ<|x|<2π;

tan1(tan(x))=xπround(xπ),tan1(cot(x))=x+π(12+floor(xπ)),cot1(cot(x))=xπfloor(xπ),cot1(tan(x))=x+π(12+round(xπ));

sin(2sin1x)=2x1x2,sin(2cos1x)=2x1x2;cos(2sin1x)=12x2,cos(2cos1x)=2x21;sin(2tan1x)=2xx2+1,cos(2tan1x)=1x2x2+1,tan(2tan1x)=2x1x2;
sin(2atan2(y,x))=2xyx2+y2,cos(2atan2(y,x))=x2y2x2+y2,tan(2atan2(y,x))=2xyx2y2;

sin(3sin1x)=3x4x3,cos(3cos1x)=4x33x;sin(3cos1x)=(4x21)1x2,cos(3sin1x)=(14x2)1x2;sin(3tan1x)=3xx3(x2+1)3/2,cos(3tan1x)=13x2(x2+1)3/2,tan(3tan1x)=x33x3x21;

sin(12sin1(x))=12(1+x1x)=12x1x2+1,cos(12sin1(x))=12(1+x+1x)=121x2+1,tan(12sin1(x))=x1x2+1;sin(12cos1(x))=1x2,cos(12cos1(x))=1+x2,tan(12cos1(x))=1x1+x;sin(12tan1(x))=12x(1+x2)+1+x2,cos(12tan1(x))=1211+x2+1,tan(12tan1(x))=x2+11x=xx2+1+1;sin(12atan2(y,x))=12y(x2+y2)+xx2+y2,cos(12atan2(y,x))=12xx2+y2+1;


Trigonometric Equations

Solutions of asin(x)=b:  x=arcsin(ba)+2πn and x=πarcsin(ba)+2πn;

Solutions of acos(x)=b:  x=±arccos(ba)+2πn;

Solutions of atan(x)=b:  x=arctan(ba)+πn;    Solutions of acos(x)+bsin(x)=0:  x=arctan(ab)+πn;

Solutions of acos(x)+bsin(x)+c=0:  x=2arctan(b±a2+b2c2ac)+2πn;

Power, Exponential, and Logarithm

f(x)=ex
 
f(x)=lnx

For real numbers:

ax=exlna;   a0=1,   ax=1ax,   axy=axy;
axay=ax+y,   axay=axy,   (ax)y=axy,   (ab)x=axbx,   (ab)x=axbx;

x=x1/2;   xy=xy,   1x=1x,   x2=|x|;

alogab=b,   logab=logcblogca=lnblna;   loga1=0,   logaa=1;
logab+logac=logabc,   logablogac=loga(bc),   logbx=logb(1x);
logabk=klogab,   logakb=1klogab,   logablogbc=logac;   a+logbx=logb(bax);   logbx=12logbx;

f(x)=x0.6
 
f(x)=x1.4
 
f(x)=x0.6
 
f(x)=x1.6

f(x)=1.6x
 
f(x)=0.4x
 
f(x)=log0.4x
 
f(x)=log1.8x

exp(a+bi)=ea(cosb+isinb),ln(a+bi)=lna2+b2+atan2(b,a)i;    a+bi=a2+b2+a2+isgn(b)a2+b2a2;

For general complex numbers with a,b0:

ax=exlna,   1a=elna;   a0=1,   ax=1ax;   axay=ax+y,   axay=axy;

*(ax)y=axy(a>0,xR);

*(ab)x=axbx,ab=ab(R(a),R(b)0, a,b not both negative imaginary;a,bR, a,b not both negative);

*(ab)x=axbx,ab=ab(R(a),R(b)>0; a,bR),      *1a=1a(a not negative real);

a2={a,a,R(a)>0; R(a)=0,I(a)>0R(a)<0; R(a)=0,I(a)<0;    (a)2=a;

eln(x)=x;   ln(ex)=x(I(x)<π);    aln(x)/ln(a)=x(x0,a0,1);

*ln(xy)=ln(x)+ln(y)(R(x),R(y)>0;x,yR, x,y not both negative),      R(ln(xy))=R(ln(x)+ln(y))(x,y0);

*ln(xy)=ln(x)ln(y)(R(x),R(y)>0;x,yR),      R(ln(xy))=R(ln(x)ln(y))(x,y0);      *ln(1x)=ln(x);

**ln(xa)=aln(x)(a,xR,x>0);      *lnx=12ln(x)(x not negative real);

Properties of complex conjugate

z±w¯¯¯¯¯¯¯¯¯¯¯¯=z¯¯¯±w¯¯¯¯,zw¯¯¯¯¯¯=z¯¯¯w¯¯¯¯,(zw)¯¯¯¯¯¯¯¯¯¯¯=z¯¯¯w¯¯¯¯;zz¯¯¯=|z|2,z1=z¯¯¯|z|2,zn¯¯¯¯¯=(z¯¯¯)n (nZ),exp(z¯¯¯)=exp(z)¯¯¯¯¯¯¯¯¯¯¯¯¯¯,ln(z¯¯¯)=ln(z)¯¯¯¯¯¯¯¯¯¯;



Hyperbolic Functions

sinhx=exex2=e2x12ex=1e2x2ex,coshx=ex+ex2=e2x+12ex=1+e2x2ex;

tanhx=sinhxcoshx=exexex+ex=e2x1e2x+1=12e2x+1,cothx=coshxsinhx=ex+exexex=e2x+1e2x1=1+2e2x1;

sinh1(x)=ln(x+x2+1),cosh1(x)=ln(x±x21),tanh1(x)=12ln(1+x1x),coth1(x)=12ln(x+1x1);

f(x)=sinhx
 
f(x)=coshx
 
f(x)=tanhx
 
f(x)=cschx
 
f(x)=sechx
 
f(x)=cothx

sin(ix)=isinhx,cos(ix)=coshx,tan(ix)=itanhx;sinh(ix)=isinx,cosh(ix)=cosx,tanh(ix)=itanx;

sin1(iz)=isinh1(z),tan1(iz)=itanh1(z);sinh1(iz)=isin1(z),tanh1(iz)=itan1(z);

coshx+sinhx=ex,coshxsinhx=ex;cosh2xsinh2x=1,sech2x+tanh2x=1,coth2xcsch2x=1;

sinh(a±b)=sinhacoshb±coshasinhb,cosh(a±b)=coshacoshb±sinhasinhb,tanh(a±b)=tanha±tanhb1±tanhatanhb;

sinh2x=2sinhxcoshx,cosh2x=sinh2x+cosh2x=2sinh2x+1=2cosh2x1,tanh2x=2tanhx1+tanh2x;

sinh3x=4sinh3x+3sinhx4sinhxcosh2xsinhx3sinhxcosh2x+sinh3x,cosh3x=4cosh3x3coshx4sinh2xcoshx+coshx3sinh2xcoshx+cosh3x,tanh3x=3tanhx+tanh3x1+3tanh2x;

sinhxsinhy=12(cosh(x+y)cosh(xy)),coshxcoshy=12(cosh(x+y)+cosh(xy)),sinhxcoshy=12(sinh(x+y)+sinh(xy));

sinh2(x)=12(cosh(2x)1),cosh2(x)=12(cosh(2x)+1),sinh(x)cosh(x)=12sinh(2x);

sinhx±sinhy=2sinh(x±y2)cosh(xy2);coshx+coshy=2cosh(x+y2)cosh(xy2),coshxcoshy=2sinh(x+y2)sinh(xy2);

sinh(cosh1x)=x21,cosh(sinh1x)=x2+1,tanh(sinh1x)=xx2+1,tanh(cosh1x)=x21x,sinh(tanh1x)=x1x2,cosh(tanh1x)=11x2;(xR);

Limit

lim[f(x)±g(x)]=limf(x)±limg(x);lim[f(x)g(x)]=limf(x)limg(x);limg(x)=limf(x)limg(x);lim[cf(x)]=climf(x);lim[f(x)]n=[limf(x)]n,nN;

If ynxnzn and limyn=limzn=a,  then limxn=a;

If limg(x)=1,  then lim[f(x)h(x)]=lim[g(x)h(x)],  lim=limg(x);

L'Hôpital's Rule:  If limf(x)=limg(x)=0 or limf(x)=limg(x)=,  then limg(x)=limf(x)g(x);

L'Hôpital's Rule for other indeterminates: lim0lim0,lim12lim1/11/21/(12),lim0exp(lim01/ln),lim1exp(limln1),lim(0+)0exp(lim01/ln0+),limlog00limln0ln0,limlog11limln1ln1;


Derivative

ddx[af(x)+bg(x)]=af(x)+bg(x);ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x);

ddx[f1(x)f2(x)f3(x)]=f1(x)f2(x)f3(x)+f1(x)f2(x)f3(x)+f1(x)f2(x)f3(x); “Each item take turns at derivation”

ddx(g(x))=f(x)g(x)f(x)g(x)g2(x),ddx(1)=u(x)u2(x);

ddx(fg)(x)=(fg)(x)g(x);ddxf1(x)=1(ff1)(x);dndnx[f(x)g(x)]=k=0n(nk)f(nk)(x)g(k)(x);

ddxC=0;ddx|x|=x|x|;

ddxxμ=μxμ1;ddxex=ex,ddxax=axlna;ddx1x=1x2,ddxx=12x,ddxx3=13x23;

ddxln|x|=1x,ddxloga|x|=1xlna;

ddxsinx=cosx,ddxcosx=sinx,ddxtanx=sec2x,ddxcscx=cscxcotx,ddxsecx=secxtanx,ddxcotx=csc2x;

ddxsin1x=11x2,ddxcos1x=11x2,ddxtan1x=11+x2,ddxcot1x=11+x2;

ddxsinhx=coshx,ddxcoshx=sinhx,ddxtanhx=sech2x,ddxcschx=cothxcschx,ddxsechx=sechxtanhx,ddxcothx=csch2x;

ddxsinh1x=1x2+1,ddxcosh1x=1x21,ddxtanh1x=ddxcoth1x=11x2;

ddxerf(x)=2πex2;

Incomplete Mark

Taylor Series:   f(x)=k=0n(xx0)kf(k)(x0)k!+Rn;   Maclaurin Series:   f(x)=k=0nxkf(k)(0)k!+Rn;  

Arc length and curvature

(x(t),y(t)): ds=x2+y2dt;   (x(t),y(t),z(t)): ds=x2+y2+z2dt;   y=f(x): ds=y2+1dx;   r=r(θ): ds=r2+r2dθ;  

Curvature:  κ=limΔs0ΔθΔs=dθds;

r⃗ =r(t):  κ(t)=|r(t)×r′′(t)||r(t)|3;  y=f(x):  κ(x)=y′′(1+y2)32;  r=r(θ):  κ(θ)=r2+2r2rr′′(r2+r2)32;

Unit tangent: T=|r(t)|;  Normal unit vector: N=T(t)|T(t)|;  Binormal unit vector: B=T×N; 

Frenet–Serret formula:  TNB=0κ0κ0τ0τ0TNB,  where τ=dBdsN is the torsion;

Kinematics

Velocity and acceleration in Cartesian coordinate:  p⃗ =xi⃗ +yj⃗ +zk⃗ ,  v⃗ =dxdti⃗ +dydtj⃗ +dzdtk⃗ ,  a⃗ =d2xdt2i⃗ +d2ydt2j⃗ +d2zdt2k⃗ ;

Velocity and acceleration in polar coordinate {r=r(t)θ=θ(t):  p⃗ =rer,  v⃗ =r˙er+rθ˙eθ,  a⃗ =(r¨rθ˙2)er+(2r˙θ˙+rθ¨)eθ;

Velocity and acceleration in eigen coordinate:  v⃗ =vet,  a⃗ =dvdtet+v2Ren,  R is the curvature radius;
 (a⃗  can also be calculated by projecting acceleration vector in et and en directions)

Derivatives of unit vectors in polar coordinate:  ddter=θ˙eθ,  ddteθ=θ˙er;

Integral

af(x)±bg(x)dx=af(x)±bg(x)dx;

(fg)(x)g(x)dx=f(u)du|u=g(x),(fg)(x)dx=1g(x)(fg)(x)d[g(x)];

f(x)dx=(fg)(u)g(u)du|u=g1(x);

uv=uvuv;Log / Inverse trig − Algebraic − Trigonometric − Exp


kdx=kx+C;|x|dx=x|x|2+C;1xdx=ln|x|+C,xμdx=μ+1+C(μ1);exdx=ex+C,axdx=axlna+C;xdx=23x3/2+C;

sinxdx=cosx+C,cosxdx=sinx+C,tanxdx=ln|cosx|+C;cotxdx=ln|sinx|+C,secxdx=tanh1(sinx)+C,cscxdx=lntanx2+C=tanh1(cosx)+C;

sinhxdx=coshx+C,coshxdx=sinhx+C,tanhxdx=ln(coshx)+C;cothxdx=ln|sinhx|+C,sechxdx=tan1(sinhx)+C,cschxdx=coth1(coshx)+C=ln(|ex1|)ln(|ex+1|)+C;

lnxdx=x(ln(x)1)+C;sin1(x)dx=xsin1(x)+1x2+C,cos1(x)dx=xcos1(x)1x2+C;

tan1(x)dx=xtan1(x)ln(x2+1)2+C,cot1(x)dx=xcot1(x)+ln(x2+1)2+C;ex2dx=π2erf(x)+C;

1a2+x2dx=1atan1(xa)+C,1a2x2dx=12alnx+axa+C=1atanh1(xa)+C=1acoth1(xa)+C;

1a2+x2dx=sinh1(x|a|)+C,1a2x2dx=sin1(x|a|)+C,1x2±a2dx=lnx2±a2+x+C;

a2x2dx=12(a2sin1(x|a|)+xa2x2)+C;a2+x2dx=12(a2sinh1(x|a|)+xa2+x2)+C;

x2a2dx=12(xx2a2a2cosh1(x|a|))+C;(x>0)

xexdx=xexex+C;xsin(x)dx=sin(x)xcos(x)+C,xcos(x)dx=cos(x)+xsin(x)+C;


Incomplete Mark

aaf(x)dx=0;   baf(x)dx=abf(x)dx;   caf(x)dx=baf(x)dx+cbf(x)dx;  

ba[f(x)±g(x)]dx=baf(x)dx±bag(x)dx,   bakf(x)dx=kbaf(x)dx,   bak1f1(x)±k2f2(x)dx=k1baf1(x)dx±k2baf2(x)dx;  

ddx(ψ(x)φ(x)f(t)dt)=ψ(x)f[ψ(x)]φ(x)f[φ(x)];  

baf(x)dx=φ1(b)φ1(a)f[φ(t)]φ(t)dt,   baf[φ(x)]φ(x)dx=φ(b)φ(a)f(x)dx=baf[φ(x)]dφ(x);   π20f(sinx)dx=π20f(cosx)dx;  

Newton-Leibniz Formula:  baf(x)dx=F(b)F(a);  

Green Formula:  LPdx+Qdy=D(QxPy)dxdy;   (A=12Lxdyydx);  

Gauss Formula:  Σ+Pdydz+Qdxdz+Rdxdy=V(Px+Qy+Rz)dxdydz;   (V=13Σxdydz+ydzdx+zdxdy);  

Stokes Formula:  LPdx+Qdy+Rdz=Σ(RyQz)dydz+(PzRx)dzdx+(QxPy)dxdy;  


Special Integrals

Elliptic integral of the first kind:   F(φ,k)=F(φ|k2)=F(sinφ;k)=φ0dθ1k2sin2θ;   K(k)=π20dθ1k2sin2θ=10dt(1t2)(1k2t2);  

Elliptic integral of the second kind:   E(φ,k)=E(φ|k2)=E(sinφ;k)=φ01k2sin2θdθ;   E(k)=π201k2sin2θdθ=101k2t21t2dt;  

Euler's Integrals:   B(x,y)=10tx1(1t)y1dt,   Γ(x)=0tx1etdt;   B(x,y)=B(y,x)=Γ(x)Γ(y)Γ(x+y);
   Γ(x+1)=xΓ(x);  B(x+1,y+1)=xy(x+y)(x+y+1)B(x,y),  B(x+1,y)=xx+yB(x,y);  Γ(x)Γ(1x)=πsin(πx),  Γ(2x)=22x1πΓ(x)Γ(x+12);  

π20cosm(x)sinn(x)dx=12B(m+12,n+12)=Γ(m+12)Γ(n+12)2Γ(m+n2+1),   π20sinn(x)dx=π20cosn(x)dx=(n1)!!n!!π2,(n1)!!n!!,nevennodd,   π20tanα(x)dx=π2cos(απ2);  


Incomplete Mark


Multivariable Derivative

[f1f2]T[x1x2]T=f1x1f2x1f1x2f2x2;   (u,v)(x,y)=uxvxuyvy,  (u,v,w)(x,y,z)=uxvxwxuyvywyuzvzwz;

(u,v)(s,t)=(u,v)(x,y)(x,y)(s,t),  (u,v)(x,y)(x,y)(u,v)=1,  (u,v)(x,y)=(v,u)(x,y),  (u,u)(x,y)=0;

Area and volume elements 

dA=dxdy=(x,y)(u,v)dudv,  dV=dxdydz=(x,y,z)(u,v,w)dudvdw;

Polar/cylindrical xy=ρcos(θ)=ρsin(θ):  (x,y)(ρ,θ)=ρ;    Spherical xyz=ρsin(φ)cos(θ)=ρsin(φ)sin(θ)=ρcos(φ):  (x,y,z)(ρ,θ,φ)=ρ2sin(φ);

Parametric surface r=r(u,v):  dA=|ru×rv|dudv=r2ur2v(rurv)2 dudv;

Derivative of implicit functions

F(x,y(x))=0:   dydx=FxFy=Fx/Fy,   d2ydx2=2Fx2(Fy)222FxyFxFy+2Fy2(Fx)2(Fy)3;

F(x,y,z(x,y))=0:   dzdx=Fx/Fz,  dzdy=Fy/Fz;


Vector Calculus

Gradient of a scalar field:  grad u=u=uxi+uyj+uzk;     Directional derivative: ddtu(x0+lt)=grad u(x0)l;

(C1u1+C2u2)=C1u1+C2u2,  u1u2=u1u2+u2u1,  f(u)=f(u)u;

Divergence of a vector field:  div F=F=Fxx+Fyy+Fzz;

div(C1v1+C2v2)=C1div(v1)+C2div(v2),  div(uv)=udiv(v)+vgrad(u);

Curl of a vector field:  curl F=×F=ixFxjyFykzFz=(FzyFyz)i+(FxzFzx)j+(FyxFxy)k;

Incomplete Mark

*|r|=r|r|;  r|r|=irrr2i|r|3=dim(r)1|r|, 

Incomplete Mark

Differential equations

Solve dydx=f(x):  y=f(x)dx+C;

Solve dydx=f(x)g(y):  1g(y)dy=f(x)dx1g(y)dy=f(x)dx+C;

Solve dydx=φ(yx):  z=yxxdzdx+z=φ(z)dzdx=φ(z)zx;  φ(z)z0:dzφ(z)z=lnxC;φ(z)z0:z=yx=C;

Solve dydx+p(x)y=q(x):  y(x)=ep(x)dx[q(x)ep(x)dxdx+C];

Solve dydx+p(x)y=q(x)yn:  z=y1ndzdx+(1n)p(x)z=(1n)q(x); (treat as above)

Solve y(n)=f(x):  dn1ydxn1=f(x)dx+C1; (repeat)

Solve y′′=f(x,y):  p(x)=dydxdpdx=f(x,p);  p(x)=φ(x,C1)y=φ(x,C1)dx+C2;

Solve y′′=f(y,y):  p(y)=dydxd2ydx2=pdpdy=f(y,p);  p(y)=φ(y,C1)dyφ(y,C1)=x+C2;

Solve y(n)=f(x,y(n1)):  u(x)=y(n2)u′′=f(x,u),  solve using above and repeat;

Solve y(n)=f(y(n1),y(n2)):  u(x)=y(n2)u′′=f(u,u),  solve using above and repeat;

Solve y′′+py+qy=0:  Let r be the roots of r2+pr+q=0;  y=C1er1x+C2er2x,erx(C1+C2x),eax(C1cos(bx)+C2sin(bx)),r[r1,r2], r1r2r=r1=r2r=a±bi, b0

Solve y′′+py+qy=eλxP(x):  Find Q(x) such that Q′′(x)+(2λ+p)Q(x)+(λ2+pλ+q)Q(x)=P(x),  y=eλxQ(x)+(solution of y′′+py+qy=0);

λ2+pλ+q and 2λ+p are both zero when λ is a multiple root of λ2+pλ+q=0;

P(x)=Pm(x) is a degree-m polynomial:  Q(x)=Qm(x),xQm(x),x2Qm(x),λ2+pλ+q0λ2+pλ+q=0, 2λ+p0λ2+pλ+q=2λ+p=0,  where Qm(x) is a polynomial of degree m;

eλxP(x)=eax[Pm(x)cos(bx)+Pn(x)sin(bx)]:  eλxQ(x)=xkeax[R1(x)cos(bx)+R2(x)sin(bx)],  k={0,1,(a+bi)2+p(a+bi)+q0(a+bi)2+p(a+bi)+q=0,  Ri(x) has degree max(m,n);

Solve y′′+p(x)y+q(x)y=0:  Find any non-zero solution y1(x),  let y2(x)=y1(x)ep(x)dxy1(x)2dx,  y=C1y1(x)+C2y2(x);

Solve y′′+p(x)y+q(x)y=f(x):  Find any solution y(x),  y(x)=y(x)+(solution of y′′+p(x)y+q(x)y=0);

If y=y1(x) satisfies y′′+p(x)y+q(x)y=f1(x) and y=y2(x) satisfies y′′+p(x)y+q(x)y=f2(x),
then y=C1y1(x)+C2y2(x) satisfies y′′+p(x)y+q(x)y=C1f1(x)+C2f2(x);

Solve x2y′′+pxy+qy=f(x):  x=etd2ydt2+(p1)dydt+qy=f(et);

Incomplete Mark

Matrix

(AB)C=A(BC),  k(AB)=(kA)B=A(kB),  A(B+C)=AB+AC,  (B+C)A=BA+CA;   AI=IA=A;  AmAn=Am+n,  (Am)n=Amn;  

(AT)T=A,  (A+B)T=AT+BT,  (kA)T=kAT,  (AB)T=BTAT,   (A1A2Ak)T=ATkATk1AT1;  ATA=0A=O;  

A invertible:  AB=OA=O,  AX=AYX=Y,  AX=OX=O,  AX=BX=A1B;  

A,B invertible:  (A1)1=A,  (λA)1=λ1A1,  (AB)1=B1A1,  (AT)1=(A1)T;  

detAB=detAdetB,  detAT=detA,  detA1=1detA;  

Swap two rows/cols:  detA=detA;   Multiply a row/col by k:  detA=kdetA;   Add the multiple of a row/col to another row/col:  detA=detA;  

deta1Oan=a1a2an,   detA1OAn=|A1||A2||An|,   detI=1;  

x1a+x1bxna+xnb=x1axna+x1bxnb;   Vandermonde Determinant: 1x1x211x2x221x3x231xnx2n=i<j(xjxi);  

A1=A|A|;   AA=AA=det(A)I;   A1=[acbd]1=1|A|[dcba];  

Cramer's Rule:  Solution of  AX=a11a21an1a12a22an2a1na2nannx1x2xn=y1y2yn=Y  is  xi=|Ai||A|,   which Ai is the matrix formed by replacing the ith column of A by Y;

R(A)=0A=O,   R(An×n)=nAintertible;   R(kA)=R(A)(k0),  R(AT)=R(A),   R(A)=n,1,0,R(A)=nR(A)=n1R(A)<n1;   R[AOOB]=R(A)+R(B);  

Elementary transforms don’t change rank of a matrix;   Am×n[IR(A)OOO]m×n;  

Incomplete Mark

2×2 matrix

Let A=[a11a21a12a22].   detA=a11a22a12a21,  A1=1detA[a22a21a12a11];   R(A)=1A rows and columns in proportion,  R(A)=0A=O.

Characteristic polynomial:  λ2(a11+a22)λ+(a11a22a12a21);   λIA=[λa11a21a12λa22]

Eigenvalues:  λ=12((a11+a22)±(a11a22)2+4a12a21);

* Eigenvectors:  (λa22,a21)((a11a22)±(a11a22)2+4a12a21, 2a21), (a12,λa11)(2a12, (a11+a22)±(a11a22)2+4a12a21);

*An=λn1λn2λ1λ2Aλ1λ2λn11λn12λ1λ2I;


Vector

a⃗ +b⃗ =b⃗ +a⃗ ,   (a⃗ +b⃗ )+c⃗ =a⃗ +(b⃗ +c⃗ ),   k(la⃗ )=(kl)a⃗ ,   k(a⃗ +b⃗ )=ka⃗ +kb⃗ ;  

|a⃗ |=a21+a22+a23,   |ka⃗ |=|k||a⃗ |;   |Prjua⃗ |=|a⃗ |cosa⃗ ,u,   Prju(a⃗ 1+a⃗ 2)=Prjua⃗ 1+Prjua⃗ 2;   |a⃗ ±b⃗ ||a⃗ |+|b⃗ |;   |a⃗ b⃗ ||a⃗ ||b⃗ |;  

cosθx=a1|a⃗ |,  cosθy=a2|a⃗ |,  cosθz=a3|a⃗ |;   e⃗ a⃗ =a⃗ |a⃗ |=(cosθx,cosθy,cosθz);   cos2θx+cos2θy+cos2θz=1;  

a⃗ b⃗ =|a⃗ ||b⃗ |cosθ=a1b1+a2b2+a3b3,   a⃗ b⃗ =b⃗ a⃗ ,   (λa⃗ )b⃗ =a⃗ (λb⃗ )=λ(a⃗ b⃗ ),   (a⃗ ±b⃗ )c⃗ =a⃗ b⃗ ±a⃗ c⃗ ;   (a⃗ ±b⃗ )2=a⃗ 2±2a⃗ b⃗ +b⃗ 2,   a⃗ 2=|a⃗ |2;  

a⃗ b⃗ a⃗ b⃗ =0a1b1+a2b2+a3b3=0;   Prja⃗ b⃗ =a⃗ b⃗ |a⃗ |=b⃗ e⃗ a⃗ ;   a⃗ ,b⃗ =cos1a⃗ b⃗ |a⃗ ||b⃗ |=cos1a1b1+a2b2+a3b3a21+a22+a23b21+b22+b33,   a⃗ b⃗ >0,<0,a⃗ ,b⃗ <π2a⃗ ,b⃗ >π2;  

a⃗ ×b⃗ =c⃗ {c⃗ a⃗ ,c⃗ b⃗ ,right-hand rule|c⃗ |=|a⃗ ||b⃗ |sinθ=i⃗ a1b1j⃗ a2b1k⃗ a3b3;   a⃗ b⃗ a⃗ ×b⃗ =0,   a⃗ b⃗ |a⃗ ×b⃗ |=|a⃗ ||b⃗ |;  

a⃗ ×b⃗ =b⃗ ×a⃗ ,   a⃗ ×a⃗ =0;   (λa⃗ )×b⃗ =λ(a⃗ ×b⃗ );   (a⃗ ±b⃗ )×c⃗ =a⃗ ×c⃗ ±b⃗ ×c⃗ ,   c⃗ ×(a⃗ ±b⃗ )=c⃗ ×a⃗ ±c⃗ ×b⃗ ;  

[a⃗ ,b⃗ ,c⃗ ]=(a⃗ ×b⃗ )c⃗ =a1b1c1a2b2c2a3b3c3;   [a⃗ ,b⃗ ,c⃗ ]=[b⃗ ,c⃗ ,a⃗ ]=[c⃗ ,a⃗ ,b⃗ ];   [a⃗ ,b⃗ ,(λc⃗ +μd⃗ )]=λ[a⃗ ,b⃗ ,c⃗ ]+μ[a⃗ ,b⃗ ,d⃗ ];  

Analytic Geometry

Basic Equations

Scylinder=2πr2+2πrl,  Scone=πr2+πrl,  Ssphere=4πr2;   Vcylinder=Sh,  Vcone=13Sh,  Vsphere=43πR3;  

(ρ;θ)(ρcosθ,ρsinθ),   (x,y)(x2+y2;atan2(y,x));  

In any triangle:   asinA=bsinB=csinC=2R;   c2=a2+b22abcosC,  cosA=b2+c2a22bc;   where R=abc4Area is the circumradius of the triangle;  
  Area=p(pa)(pb)(pc)=rs,  where s=12(a+b+c), r denotes the inradius;  

Area of quadrilateral:  (sa)(sb)(sc)(sd)abcdcos2θ,   where s=14(a+b+c+d), cosθ=cos[12(A+C)]=cos[12(B+D)];

Distance from point (x0,y0) to line Ax+By+C=0:  d=|Ax0+By0+C|A2+B2;  

Distance from point (x0,y0,z0) to plane Ax+By+Cz+D=0:  d=|Ax0+By0+Cz0+D|A2+B2+C2;  

Distance between y=mx+b and y=mx+c:  |bc|m2+1;  

Equations of Planar Straight Line

0)General

Ax+By+C=0

m=AB,  a=CA,  b=CB,  n⃗ =(A,B)
1)Slope m and y-intercept by=mx+ba=bm
2)Point (x0,y0) and slope myy0=m(xx0)a=y0m+x0,  b=y0mx0
3)Points (x1,y1) and (x2,y2)yy1y2y1=xx1x2x1m=y2y1x2x1,  a=x1y2x2y1y2y1,  b=x2y1x1y2x2x1
4)x and y intercepts a, bxa+yb=1m=ba

m is the slope and a, b are x and y intercepts.

l1l2m1=m2,   l1=l2m1=m2b1=b2;   l1l2m1m2=1;  

Equations of Circle

1)Center C(a,b) and radius r

(xa)2+(yb)2=r2

x2+y2+(2a)x+(2b)y+(a2+b2r2)=0
2)Generalx2+y2+Dx+Ey+F=0
(D2+E24F>0)
C=(D2,E2),  r=12D2+E24F

Equation 2) is convenient in determining the equation of a circle through 3 given points. (Solve systems of linear equations. )

Quadratic Curves

Ellipse:  x2a2+y2b2=1(a>b>0);   x[a,a],  y[b,b],  c=a2b2,  F=(±c,0),  e=ca<1;  

Hyperbola:  x2a2y2b2=1(a,b>0);   |x|a,  c=a2+b2,  F=(±c,0),  e=ca>1;   asymptote: xa±yb=0;

Parabola:  y2=2px(p>0);   Focus: (p2,0),   Directrix: x=p2,  e=1;      y=ax2:  F=14a,  directrix: y=14a;  

Equations of Plane

0)General

Ax+By+Cz+D=0

n⃗ =(A,B,C)
1)Normal n⃗ =(A,B,C)
and point P=(x0,y0,z0)
A(xx0)+B(yy0)+C(zz0)=0
Ax+By+Cz=Ax0+By0+Cz0
2)Three points Pi(xi,yi,zi)
(i={1,2,3})
xx1x2x1x3x1yy1y2y1y3y1zz1z2z1z3z1=0
3)x, y and z intercepts a, b, cxa+yb+zc=1

A=0:  parallel to x-axis;   A=B=0:  parallel to xOy plane;   D=0:  through Origin;  

π1π2A1A2+B1B2+C1C2=0,   π1π2A1A2=B1B2=C1C2;   π1,π2=cos1|A1A2+B1B2+C1C2|A21+B21+C21A22+B22+C22;  

Equations of Spatial Straight Line

1)Point P(x0,y0,z0)
and direction vector s⃗ =(a,b,c)
xx0a=yy0b=zz0cIf a,b,or c occurs as 0, then the numerator is also 0
2)through P1(x1,y1,z1)
and P2(x2,y2,z2)
xx1x2x1=yy1y2y1=zz1z2z1
3)Parameterx=x0+aty=y0+btz=z0+ctP0(x0,y0,z0) and direction vector s⃗ =(a,b,c),  same as #1;
Usually for solving equations
4)Intersection of two planes{A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0s⃗ =i⃗ A1A2j⃗ B1B2k⃗ C1C2;  

Distance from point M to line P=P0+s⃗ t:   d=|s⃗ ×MP0||s⃗ |;  

l1l2s⃗ 1s⃗ 2,   l1=l2s⃗ 1s⃗ 2P1P2;   l1 intersect l2s⃗ 1s⃗ 2[s1,s2,P1P2]=0;   l1,l2=cos1|s⃗ 1s⃗ 2||s⃗ 1||s⃗ 2|,   l1l2s⃗ 1s⃗ 2=0;  

lπs⃗ n⃗ =0,   lπs⃗ n⃗ =0Ax0+By0+Cz0+D=0;   l intersect πs⃗ n⃗ 0,   l,π=sin1|s⃗ n⃗ ||s⃗ ||n⃗ |;  

Sheaf of Planes:   Let the equation of straight line l be {A1x+B1y+C1z+D1=0(1)A2x+B2y+C2z+D2=0(2),

   the equation of all planes through l is given by:  (A1x+B1y+C1z+D1)+λ(A2x+B2y+C2z+D2)=0,   except #2  (λ);  


Incomplete Mark

Permutation and Combination

n different types, k choices:

Number of Orders:  n!;  

Permutations without Repetition:  Pnk=n!(nk)!;   (Also denoted as Pkn,  Akn,  nPk,  nPk)

Permutations with Repetition:  Unk=nk;  

Combinations without Repetition:  Cnk=n!k!(nk)!;   (Also denoted as C(n,k), (nk),  Ckn,  nCk,  nCk)

Combinations with Repetition:  Hnk=(n+k1)!k!(n1)!;   (Also denoted as Fnk)   Hnk=Cn+k1k=Cn+k1n1;  

Number of Orders in Circular Permutation:  (n1)!;  

*Circular Permutation without Repetition:   Qnk=n!k(nk)!;   Qnk=Pnkk;  

*Circular Permutation with Repetition:   r|k(rφ(r)nkr)k;  

(nk)=(nnk)=nk(n1k1);(nk1)+(nk)=(n+1k),(nk)=(n1k1)+(n1k);


Statistics and Probability

Mean: μ=1Ni=1Nxi;   Variance: σ2=1Ni=0N(xiμ)2=1Ni=1Nx2i1N(i=1Nxi)2;   Standard deviation: σ=σ2;

Variance of a sample: s2=1n1i=0n(xiμ)2=1n1i=1nx2i1n(i=1nxi)2;   Standard deviation of a sample: s=s2;

Random variable, expected value and variance

Discrete random variable:  E(X)=ixiP(xi),var(X)=i(xiμX)P(xi);

Continuous random variable:  E(X)=xpX(x)dx,var(X)=(xμX)2pX(x)dx;

E(aX+b)=aE(X)+b,var(aX+b)=a2var(X),σaX+b=|a|σX;var(X)=E(X2)E(X)2;E(X±Y)=E(X)±E(Y);

For independent random variables X, Y:  E(XY)=E(X)E(Y);var(X+Y)=var(X)+var(Y),  σX+Y=σ2X+σ2Y;

*Probability distributions

Normal distribution:  PDF(x)=1σ2πexp((xμ)22σ2),CDF(x)=12(1+erf(xμ)),Quantile(p)=μ+σ2erf1(2p1);Pr(|Xμ|<σX)68.27%,Pr(|Xμ|<2σX)95.45%,Pr(|Xμ|<3σX)99.73%;

Exponential distribution:  x0,PDF(x)=λeλx,CDF(x)=1eλx,Quantile(p)=ln(1p)λ;μ=1λ,σ2=1λ2;

Binomial distribution:  Pr(X=k)=(nk)pk(1p)nk;μ=np,σ2=np(1p);

Geometric distribution with k1:  Pr(X=k)=(1p)k1p,Pr(Xk)=1(1p)k;μ=1p,σ2=1pp2;
Geometric distribution with k0:  Pr(X=k)=(1p)kp,Pr(Xk)=1(1p)k+1;μ=1pp,σ2=1pp2;

Poisson distribution:  PDF(k)=λkeλk!;μ=λ,σ2=λ;

*Transformations of probability density functions

Probability density function pX(x) transformed using y=y(x):  pY(y)=pX(x(y))dxdy;   paX+b(y)=1|a|pX(yba);

Convolution of probability distributions:  let Z=X+Y,Pr(Z=z)=kPr(X=k)Pr(Y=zk),pZ(z)=pX(zt)pY(t)dt=pX(t)pY(zt)dt;

i=1nNormal(μi,σ2i)Normal(i=1nμi,i=1nσ2i);i=1nBinomial(ni,p)Binomial(i=1nni,p);i=1nPoisson(λi)Poisson(i=1nλi);

Miscellaneous Algebra

a3±b3=(a±b)(a2ab+b2),a4b4=(ab)(a3+a2b+ab2+b3),anbn=(ab)(an1+an2b+an3b2++a2bn3+abn2+bn1);

1ab=1ba(1a1b);11x+1y=xyx+y,11x+1y+1z=xyzxy+xz+yz;11x11+x=2x1x2;

Solutions of ax2+bx+c=0:  x=±b24acb2a;  Solutions of ax2+2bx+c=0:  x=±b2acba;

Vertex of ax2+bx+c:  (b2a,4acb24a); Inflection point of ax3+bx2+cx+d:  (b3a,27a2d9abc+2b3);

Let x1, x2 be the roots of ax2+bx+c:  x1+x2=ba,x1x2=ca,x21+x22=b22aca2;

Parabola through (x1,y1),(x2,y2),(x3,y3):  f(x)=y1(xx2)(xx3)(x1x2)(x1x3)+y2(xx1)(xx3)(x2x1)(x2x3)+y3(xx1)(xx2)(x3x1)(x3x2);
f(x)=ax2+bx+c,a=x1(y3y2)+x2(y1y3)+x3(y2y1)(x1x2)(x1x3)(x2x3)=y1(x2x3)+y2(x3x1)+y3(x1x2)(x1x2)(x1x3)(x2x3),b=x21(y3y2)+x22(y1y3)+x23(y2y1)(x1x2)(x1x3)(x2x3)=y1(x22x23)+y2(x23x21)+y3(x21x22)(x1x2)(x1x3)(x2x3),c=x21(x2y3x3y2)+x22(x3y1x1y3)+x23(x1y2x2y1)(x1x2)(x1x3)(x2x3)=y1(x2x3(x2x3))+y2(x3x1(x3x1))+y3(x1x2(x1x2))(x1x2)(x1x3)(x2x3);

Sequence and Series

Arithmetic Sequence:   an=a1+d(n1),  n=ana1d+1,  d=ana1n1;   Sn=n(a1+an)2=na1+n(n1)2d,   Pn=dnΓ(a1/d+n)Γ(a1/d)(a1/dN);  

Geometric Sequence:   an=a1qn1,  n=logqana1+1,  q=(ana1)1n1;   Sn=a1(qn1)q1=anqa1q1;   Pn=an1qn(n1)2;  

k=0rk=+11rdiverger1|r|<1r1;   k=1nrk=r(1rn)(1r),k=0nrk=1rn+11r;

k=1nk=12n(n+1),k=1nk2=16n(n+1)(2n+1),k=1nk3=14n2(n+1)2,k=1nk4=130n(n+1)(2n+1)(3n2+3n1);

(a+b)n=k=0n(nk)akbnk=k=0n(nk)ankbk,(1+x)n=k=0n(nk)xk,(1x)n=k=0n(nk)(1)kxk,(x1)n=k=0n(nk)(1)nkxk;

Taylor and Maclaurin Series

11x=k=0xk=1+x+x2+x3+,11+x=k=0(1)kxk=1x+x2x3+,ln(1+x)=k=0(1)kxk+1k+1=xx22+x33x44+;(|x|1)

11x2=k=0x2k=1+x2+x4+x6+,11+x2=k=0(1)kx2k=1x2+x4x6+,

arctan(x)=k=0(1)kx2k+12k+1=xx33+x55x77+,arctanh(x)=k=0x2k+12k+1=x+x33+x55+x77+;(|x|1)

ex=k=0xkk!=1+x+x22!+x33!+,sin(x)=k=0(1)kx2k+1(2k+1)!=xx33!+x55!x77!+,cos(x)=k=0(1)kx2k(2k)!=1x22!+x44!x66!+,

sinh(x)=k=0x2k+1(2k+1)!=x+x33!+x55!+x77!+,cosh(x)=k=0x2k(2k)!=1+x22!+x44!+x66!+;


Fourier Series and Integral

Function f with period T:  f(t)=a02+k=1(ancos(kωt)+bnsin(kωt)),  where ak=2Tt0+Tt0f(t)cos(kωt)dt,bk=2Tt0+Tt0f(t)sin(kωt)dt,ω=2πT;

     or  f(t)=k=cnekiωt,ck=1Tt0+Tt0f(t)ekiωtdt,ω=2πT;    ck=c¯¯k for real f;

When T=2π:   f(x)=a02+k=1(akcos(kx)+bksin(kx)),ak=1πππf(x)cos(kx)dx,bk=1πππf(x)sin(kx)dx;    1πππf(x)2dx=a202+k=1(a2k+b2k)

Fourier integral:  f(x)=12πdλf(t)eiλ(tx)dt=12πC(λ)eiλxdλ,C(λ)=f(t)eiλtdt;

     or  f(x)=1π0(A(λ)cosλx+B(λ)sinλx)dλ,A(λ)=f(t)cosλt dt,B(λ)=f(t)sinλt dt;

* Fourier Transform

Fourier transform and its inverse:  f^(ξ)=f(x)e2πiξxdx,f(x)=f^(ξ)e2πiξxdξ;

F{af(x)+bg(x)}=af^(ξ)+bg^(ξ),F{f(xx0)}=e2πiξx0f^(ξ),F{e2πiξ0xf(x)}=f^(ξξ0),F{f(ax)}=1|a|f^(ξa)(aR),F{f(x)}=f^(ξ),F{f(x)¯¯¯¯¯¯¯¯¯¯}=f^(ξ)¯¯¯¯¯¯¯¯¯¯¯¯¯¯;f^(ξ)=f^(ξ)¯¯¯¯¯¯¯¯¯¯(fR);

F{ddxf(x)}=2πiξf^(ξ),F{dndxn}=(2πiξ)nf^(ξ);*F{2πixf(x)}=ddξf^(ξ);

*F{(fg)(x)}=f^(ξ)g^(ξ),F{f(x)g(x)}=(f^g^)(ξ);  where (fg)(x)=f(t)g(xt)dt;

*|f(x)|2dx=f^(ξ)2dξ,f(x)g(x)¯¯¯¯¯¯¯¯¯dx=f^(ξ)g^(ξ)¯¯¯¯¯¯¯¯¯dξ;(|f(x)|2dx<, |g(x)|2dx<;)

Discrete Fourier Transform

Discrete Fourier transform and its inverse:  Xk=n=0N1xnexp(2πiknN),xn=1Nk=0N1Xkexp(2πinkN);

F({axn+byn})k=aXk+bYk,F({xn})k=Xk,F({xn¯¯¯¯¯})k=Xk¯¯¯¯¯¯¯¯¯,F({xnt})k=e2πitkNXk,F({e2πitnNxn})k=Xkt;

F1({XkYk})n=t=0N1xtynt,F({xnyn})k=1Nt=0N1xtykt;

n=0N1xnyn¯¯¯¯¯=1Nk=0N1XkYk¯¯¯¯¯,n=0N1|xn|2=1Nk=0N1|Xk|2;

Incomplete Mark