2-dimensional integral substitutions

Description Transform Inverse transform Other properties /
Additional notes
Jacobian Commonly apply to
Polar
$\rho$: distance to the origin
$\theta$: polar angle
$x=\rho\cos(\theta)$
$y=\rho\sin(\theta)$
$\rho=\sqrt{x^2+y^2}$
$\theta=\mathrm{atan2}(y,x)$
$x^2+y^2=\rho^2$
$\rho\ge0$
$\dfrac{\partial(x,y)}{\partial(\rho,\theta)}=\rho$ Circular integral regions
Planar regions described by implicit algebraic equations
Polar
*Integrals of symmetrical functions in circular regions
$\mathbf{r}=(x,y)$
$r=|\mathbf{r}|=\sqrt{x^2+y^2}$
$\displaystyle\iint{f(|\mathbf{r}|)\ \mathrm{d}{\mathbf{r}}}=2\pi\int{r f(r)\mathrm{d}{r}}$ Circular regions centered at the origin
Infinite 2D plane
Generalized polar
$a,b$: scaling on x and y-axis
$x=a\rho\cos(\theta)$
$y=b\rho\sin(\theta)$
$\rho=\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}}$
$\theta=\mathrm{atan2}(ay,bx)$
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\rho^2$
$\rho\ge0$
$\dfrac{\partial(x,y)}{\partial(\rho,\theta)}=ab\rho$ Elliptical integral regions
Isosceles right triangle formed by axises
$u$: distance to origin (Manhattan)
$v$: linear interpolation coefficient from x-axis to y-axis
$x=u(1-v)$
$y=uv$
$u=x+y$
$v=\dfrac{y}{x+y}$
Usually, $u\ge 0$ and $0\le v\le 1$. $\dfrac{\partial(x,y)}{\partial(u,v)}=u$
$\dfrac{\partial(u,v)}{\partial(x,y)}=\dfrac{1}{x+y}$
Region in the first quadrant defined by $x+y\le a$
Triangle defined by origin and two vectors $\vec{a}, \vec{b}$ $\vec{p}=u(1-v)\cdot\vec{a}+uv\cdot\vec{b}$ $\begin{bmatrix}x'\\y'\end{bmatrix}=\begin{bmatrix}\vec{a}&\vec{b}\end{bmatrix}^{-1}\begin{bmatrix}x\\y\end{bmatrix}$
$u=x'+y'$, $v=\frac{y'}{x'+y'}$
$0\le u\le 1$, $0\le v\le 1$ $\dfrac{\partial(x,y)}{\partial(u,v)}=|\vec{a}\times\vec{b}|\cdot u$
Triangular integral regions
Green theorem for regions inside polygons
Matrix $\begin{bmatrix}x\\y\end{bmatrix}=\mathbf{A}\begin{bmatrix}u\\v\end{bmatrix}$ $\begin{bmatrix}u\\v\end{bmatrix}=\mathbf{A}^{-1}\begin{bmatrix}x\\y\end{bmatrix}$ $\dfrac{\partial(x,y)}{\partial(u,v)}=\det(\mathbf{A})$
Parallelogram / Triangle

3-dimensional integral substitutions

Description Transform Inverse transform Other properties /
Additional notes
Jacobian Commonly apply to
Cylindrical
$\rho$: distance to the origin
$\theta$: polar angle
$h$: height
$x=\rho\cos(\theta)$
$y=\rho\sin(\theta)$
$z=h$
$\rho=\sqrt{x^2+y^2}$
$\theta=\mathrm{atan2}(y,x)$
$h=z$
$x^2+y^2=\rho^2$
$\rho\ge0$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,h)}=\rho$ Integral volumes with circular bases
Generalized cylindrical
$a,b$: scaling on x and y-axis
$x=a\rho\cos(\theta)$
$y=b\rho\sin(\theta)$
$z=h$
$\rho=\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}}$
$\theta=\mathrm{atan2}(ay,bx)$
$h=z$
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\rho^2$
$\rho\ge0$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,h)}=ab\rho$ Integral volumes with elliptical bases
Spherical (standard)
$\rho$: distance to the origin
$\theta$: longitude
$\varphi$: angle to the vertical axis
$x=\rho\sin(\varphi)\cos(\theta)$
$y=\rho\sin(\varphi)\sin(\theta)$
$z=\rho\cos(\varphi)$
$\rho=\sqrt{x^2+y^2+z^2}$
$\theta=\mathrm{atan2}(y,x)$
$\varphi=\mathrm{atan2}(\sqrt{x^2+y^2},z)$
$x^2+y^2+z^2=\rho^2$
$x^2+y^2=\rho^2\sin^2(\varphi)$
$\rho\ge 0$, $0\le\varphi\le\pi$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,\varphi)}=\rho^2\sin(\varphi)$ Spherical (ρ) and conical (φ) volumes
Volumes defined by implicit algebraic equations
Spherical (latitude)
$\rho$: distance to the origin
$\theta, \varphi$: longitude and latitude
$x=\rho\cos(\varphi)\cos(\theta)$
$y=\rho\cos(\varphi)\sin(\theta)$
$z=\rho\sin(\varphi)$
$\rho=\sqrt{x^2+y^2+z^2}$
$\theta=\mathrm{atan2}(y,x)$
$\varphi=\mathrm{atan2}(z,\sqrt{x^2+y^2})$
$x^2+y^2+z^2=\rho^2$
$x^2+y^2=\rho^2\cos^2(\varphi)$
$\rho\ge0$, $-\frac{\pi}{2}\le\varphi\le\frac{\pi}{2}$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,\varphi)}=\rho^2\cos(\varphi)$ Spheres
Spherical
*Integrals of symmetrical functions in spherical regions
$\mathbf{r}=(x,y,z)$
$r=|\mathbf{r}|=\sqrt{x^2+y^2+z^2}$
$\displaystyle\iiint{f(|\mathbf{r}|)\ \mathrm{d}{\mathbf{r}}}=4\pi\int{r^2f(r)\mathrm{d}{r}}$ Spherical regions centered at the origin
Infinite three-dimensional space
Generalized spherical
$a,b,c$: scaling on x, y, and z-axis
$x=a\rho\sin(\varphi)\cos(\theta)$
$y=b\rho\sin(\varphi)\sin(\theta)$
$z=c\rho\cos(\varphi)$
$\rho=\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}}$
$\theta=\mathrm{atan2}(ay,bx)$
$\varphi=\mathrm{atan2}\left(\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}},\dfrac{z}{c}\right)$
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}=\rho^2$
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\rho^2\sin^2(\varphi)$
$\rho\ge 0$, $0\le\varphi\le\pi$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,\varphi)}=abc\rho^2\sin(\varphi)$ Ellipsoids
Conical
$\rho h$: radius at $z=h$
$x=\rho h \cos(\theta)$
$y=\rho h \sin(\theta)$
$z=h$
$\rho=\dfrac{1}{z}\sqrt{x^2+y^2}$
$\theta=\mathrm{atan2}(y,x)$
$h=z$
$x^2+y^2=\rho^2h^2$
$0\le\rho\le\frac{r}{h_1}$ for integral in a cone with height $h_1$ and base radius $r$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,h)}=\rho h^2$ Cones
Generalized conical
$a,b,c$ are scaling factors on x, y, z axis
$x=a\rho h \cos(\theta)$
$y=b\rho h \sin(\theta)$
$z=ch$
$\rho=\dfrac{c}{z}\sqrt{\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}}$
$\theta=\mathrm{atan2}(ay,bx)$
$h=\dfrac{z}{c}$
$\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=\rho^2h^2$
$0\le\rho\le1$, $0\le h\le1$
$\dfrac{\partial(x,y,z)}{\partial(\rho,\theta,h)}=abc\rho h^2$ Elliptic cones with base radius $a,b$ and height $c$
Toric
$u$: longitude
$v$: latitude
$\rho$: radius of small circle
$R$: radius of large circle
$x=\cos(u)(R+\rho\cos v)$
$y=\sin(u)(R+\rho\cos v)$
$z=\rho\sin(v)$
$\rho=\sqrt{(\sqrt{x^2+y^2}-R)^2+z^2}$
$u=\mathrm{atan2}(y,x)$
$v=\mathrm{atan2}(z,x^2+y^2-R)$
$x^2+y^2=(R+\rho\cos v)^2$
$0\le u,v\le 2\pi$, $\rho\ge 0$
$\dfrac{\partial(x,y,z)}{\partial(\rho,u,v)}=\rho(R+\rho\cos v)$ Toruses
Tetrahedron formed by coordinate planes and a plane with $\vec{n}=(1,1,1)$
$u\in[0,1]$: xOy to z-axis
$v\in[0,1]$: xOz to yOz
$w$: x + y + z
$x=u(1-v)w$
$y=uvw$
$z=(1-u)w$
$u=\dfrac{x+y}{x+y+z}$
$v=\dfrac{y}{x+y}$
$w=x+y+z$
$x+y=uw$

Usually, $w\ge0$, $0\le u\le 1$, $0\le v\le 1$.
$\dfrac{\partial(x,y,z)}{\partial(u,v,w)}=uw^2$ Volume in the first octant defined by $x+y+z\le a$
Tetrahedron defined by origin and three vectors $\vec{a}, \vec{b}, \vec{c}$ $\vec{p} = u(1-v)w\cdot\vec{a}+$
$uvw\cdot\vec{b}+(1-u)w\cdot\vec{c}$
Transform $\vec{p}$ using $[\vec{a},\vec{b},\vec{c}]^{-1}$ and apply the formula in the above cell $0\le u\le 1$
$0\le v\le 1$
$0\le w\le 1$
$\dfrac{\partial(x,y,z)}{\partial(u,v,w)}=\det[\vec{a},\vec{b},\vec{c}]\cdot uw^2$ Gauss divergence theorem for integrals inside polyhedrons

3-dimensional area elements

$\newcommand{\d}{\mathrm{d}}$
Description Parametric equation Directional derivatives Normal vector Area element
Triangle defined by point $p$ and vectors $\vec{a},\vec{b}$ $p+u(1-v)\vec{a}+uv\vec{b}$
$p+u\vec{a}+uv(\vec{b}-\vec{a})$
$0< u,v< 1$
$P_u'=(1-v)\vec{a}+v\vec{b}$
$P_v'=u(\vec{b}-\vec{a})$
$\mathbf{n}=(\vec{a}\times\vec{b})\cdot u$ $\d{A}=|\vec{a}\times\vec{b}|\cdot u \;\d{u}\d{v}$
Parallelogram defined by point $p$ and vectors $\vec{a},\vec{b}$ $p+u\vec{a}+v\vec{b}$
$0< u,v< 1$
$P_u'=\vec{a},\; P_v'=\vec{b}$ $\mathbf{n}=\vec{a}\times\vec{b}$ $\d{A}=|\vec{a}\times\vec{b}|\;\d{u}\d{v}$
Cylinder with base radius $r$ $x=r\cos(u)$
$y=r\sin(u)$
$z=v$
$P_u'=(-r\cos(u),r\sin(u),0)$
$P_v'=(0,0,1)$
$\mathbf{n}=(r\cos(u),r\sin(u),0)$
$\vec{n}=(\cos(u),\sin(u),0)$
$\d{A}=r\;\d{u}\d{v}$
Standard sphere with radius $r$ $x=r\sin(\varphi)\cos(\theta)$
$y=r\sin(\varphi)\sin(\theta)$
$z=r\cos(\varphi)$
$P_\theta'=(-r\sin\varphi\sin\theta,r\sin\varphi\cos\theta,0)$
$P_\varphi'=(r\cos\varphi\cos\theta,r\cos\varphi\sin\theta,-r\sin\varphi)$
$\vec{n}=\dfrac{1}{r}(x,y,z)$
$\mathbf{n}=r^2\sin(\varphi)\cdot\vec{n}$
$\d A=r^2\sin(\varphi) \;\d\varphi\d\theta$
Sphere with radius $r$ parametrized on latitude
$x=r\cos(\varphi)\cos(\theta)$
$y=r\cos(\varphi)\sin(\theta)$
$z=r\sin(\varphi)$
$P_\theta'=r(-\cos\varphi\sin\theta,\cos\varphi\cos\theta,0)$
$P_\varphi'=r(-\sin\varphi\cos\theta,-\sin\varphi\sin\theta,\cos\varphi)$
$\vec{n}=\dfrac{1}{r}(x,y,z)$
$\mathbf{n}=r^2\cos(\varphi)\cdot\vec{n}$
$\d A=r^2\cos(\varphi) \;\d\varphi\d\theta$
Cone with $k$ equals to the tangent of one half of the opening angle $x=k h\cos(\theta)$
$y=k h\sin(\theta)$
$z=h$
$P_\theta'=(-k h\sin(\theta),k h\cos(\theta),0)$
$P_h'=(k\cos(\theta),k\sin(\theta),1)$
$\mathbf{n}=kh(\cos(\theta),\sin(\theta),-k)$ $\d A=k\sqrt{1+k^2}\cdot h \;\d\theta\d h$
Cone with base radius $r$ and height $h$ $x=r v\cos(\theta)$
$y=r v\sin(\theta)$
$z=h v$
$P_\theta'=(-rv\sin(\theta),rv\cos(\theta),0)$
$P_v'=(r\cos(\theta),r\sin(\theta),h)$
$\mathbf{n}=rv(h\cos(\theta),h\sin(\theta),-r)$ $\d A=r\sqrt{r^2+h^2}\cdot v \;\d\theta\d v$
Torus with major radius $R$ and minor radius $r$ $x=\cos(u)(R+r\cos v)$
$y=\sin(u)(R+r\cos v)$
$z=r\sin(v)$
$P_u'=(R+r\cos v)(-\sin u,\cos u,0)$
$P_v'=r(-\cos u\sin v,-\sin u\sin v,\cos v)$
$\mathbf{n}=r(R+r\cos v)\cdot$
$(\cos u\cos v,\sin u\cos v,\sin v)$
$\d A=r(R+r\cos(v)) \;\d{u}\d{v}$
Elliptic cylinder with scaling factor $a,b$ on x, y axis $x=a\cos(u)$
$y=b\sin(u)$
$z=v$
$P_u'=(-a\sin(u),b\cos(u),0)$
$P_v'=(0,0,1)$
$\mathbf{n}=(b\cos(u),a\sin(u),0)$ $\d{A}=\sqrt{a^2\sin^2(u)+b^2\cos^2(u)} \;\d{u}\d{v}$
Ellipsoid with radius $a,b,c$ on x, y, z axis $x=a\sin(\varphi)\cos(\theta)$
$y=b\sin(\varphi)\sin(\theta)$
$z=c\cos(\varphi)$
$P_\theta'=(-a\sin\varphi\sin\theta,b\sin\varphi\cos\theta,0)$
$P_\varphi'=(a\cos\varphi\cos\theta,b\cos\varphi\sin\theta,-c\sin\varphi)$
$\mathbf{n}=\sin\varphi(bc\sin\varphi\cos\theta,$
$ac\sin\varphi\sin\theta,ab\cos\varphi)$
$\d A=\sin(\varphi){\large[}a^2b^2\cos^2(\varphi)+$
$c^2\sin^2(\varphi)(a^2\sin^2(\theta)+b^2\cos^2(\theta)){\large]}^{1/2} \;\d\varphi\d\theta$
Elliptic cone with radius $a,b$ on cross section with $z=1$ $x=ah\cos(\theta)$
$y=bh\sin(\theta)$
$z=h$
$P_\theta'=(-ah\sin(\theta),bh\cos(\theta),0)$
$P_h'=(a\cos(\theta),b\sin(\theta),1)$
$\mathbf{n}=h(b\cos(\theta),a\sin(\theta),-ab)$ $\d A=h\cdot {\large[}a^2b^2+$
$a^2\sin^2(\theta)+b^2\cos^2(h){\large]}^{1/2} \;\d\theta\d h$