Dynamics
Kinematics of a point mass
$\displaystyle \vec{v}=\frac{\partial\vec{d}}{\partial t},\quad \vec{a}=\frac{\partial\vec{v}}{\partial t}=\frac{\partial^2\vec{d}}{\partial t^2},\quad \vec{d}=\int{\vec{v}\cdot\d{t}},\quad \vec{v}=\int{\vec{a}\cdot\d{t}};\quad$
Polar coordinate $\begin{cases}r=r(t)\\\theta=\theta(t)\end{cases}$:
$\dfrac{\partial\vec{e_r}}{\partial t}=\dot{\theta}\vec{e_\theta},\quad
\dfrac{\partial\vec{e_\theta}}{\partial t}=-\dot{\theta}\vec{e_r};\quad$
$\vec{d}=r\vec{e_r},\quad
\vec{v}=\dot{r}\vec{e_r}+r\dot{\theta}\vec{e_\theta},\quad
\vec{a}=\left(\ddot{r}-r\dot{\theta}^2\right)\vec{e_r}+\left(2\dot{r}\dot{\theta}+r\ddot{\theta}\right)\vec{e_\theta};\quad$
Eigen coordinate:
$\vec{v}=v\vec{e_t},\quad
\vec{a}=\dfrac{\partial v}{\partial t}\vec{e_t}+\dfrac{v^2}{R}\vec{e_n};\quad$
where $R$ is the curvature radius;
Motion related to a uniformly accelerating reference frame:
$\vec{v}=\vec{v_r}+\dot{\vec{r_0}},\quad
\vec{a}=\vec{a_r}+\ddot{\vec{r_0}}=\vec{a_r}+\vec{a_0};\quad$
where $\vec{v_r}$ and $\vec{a_r}$ are relative motion and acceleration,
$\vec{v_0}$ and $\vec{a_0}$ are the velocity and acceleration of the reference frame;
Centrifugal acceleration: $a=\dfrac{v^2}{r}=w^2r=4\pi^2rf^2=\dfrac{4\pi^2r}{T^2};$
Motion with constant acceleration
$\vec{v_1}=\vec{v_0}+\vec{a}\Delta t,\quad \Delta\vec{d}=\left(\dfrac{\vec{v_0}+\vec{v_1}}{2}\right)\Delta t,\quad \Delta\vec{d}=\vec{v_0}\Delta t+\dfrac{1}{2}\vec{a}\Delta t^2 =\vec{v_1}\Delta t-\dfrac{1}{2}\vec{a}\Delta t^2,\quad v_1^2=v_0^2+2\vec{a}\cdot\vec{d};\quad$
Projectile motion in 2D: $\displaystyle \vec{d}(t)=\left(v_0\cos(\theta)t,\ v_0\sin(\theta)t-\frac{1}{2}gt^2\right),\quad t_1=\frac{2v_0\sin(\theta)}{g},\quad \vec{d_1}=\left(\frac{v_0^2\sin(2\theta)}{g},0\right),\quad \vec{d_{1/2}}=\left(\frac{v_0^2\sin(\theta)\cos(\theta)}{g},\frac{v_{0}^{2}\sin(\theta)^2}{2g}\right);\quad$
Rigid body
Fluid
Momentum and Energy
Forces
Gravitational force:
$F=G\dfrac{Mm}{r^2},\quad
\vec{F}=-G\dfrac{Mm}{r^2}\vec{e_r}=-G\dfrac{Mm\vec{r}}{|\vec{r}|^3};\quad$
where $G\approx6.674\times10^{-11}\ m^3kg^{-1}s^{-2}$;
Gravitational potential energy:
$E=-G\dfrac{Mm}{r};\quad$
Close to earth’s surface:
$E=mgh,\quad F=mg;$
Hooke’s law for springs: $\vec{F}=-k\Delta\vec{x},\quad E=\dfrac{1}{2}(\Delta\vec{x})^2;$
Inertial force in uniformly accelerating reference frame:
$\vec{F}=-m\vec{a_0};$
Inertial force in uniformly rotating reference frame:
centrifugal force $\vec{F}=m\omega^2r\cdot\vec{e_r}$,
Coriolis force $\vec{F}=2m\cdot\vec{v}_{relative}\times\vec{\omega}$;
Momentum
$\vec{p}=m\vec{v},\quad \Delta\vec{p}=\vec{F}\Delta t;$
Work and kinetic energy
$W=\vec{F}\cdot\Delta\vec{d},\quad E_k=\dfrac{1}{2}mv^2,\quad W=\Delta E_k=\dfrac{1}{2}mv_1^2-\dfrac{1}{2}mv_0^2;\quad P=\dfrac{W}{t}=\dfrac{\Delta E}{\Delta t};$
Collision
Elastic collision: $\displaystyle \sum_i{m_i\vec{u_i}}=\sum_i{m_i\vec{v_i}},\quad \sum_i{\dfrac{1}{2}m_iu_i^2}=\sum_i{\dfrac{1}{2}m_iv_i^2};\quad$
Elastic collision in one dimension: $\vec{v_1}=\dfrac{(m_1-m_2)\vec{u_1}+2m_2\vec{u_2}}{m_1+m_2},\quad \vec{v_2}=\dfrac{(m_2-m_1)\vec{u_2}+2m_1\vec{u_1}}{m_1+m_2};\quad$ When $m_1=m_2$: $\vec{v_1}=\vec{u_2},\ \vec{v_2}=\vec{u_1};$
Elastic non-central collision: $m_1\vec{v_1}=m_1\vec{u_1}+\Delta{p}\cdot\mathbf{\vec{n}},\quad m_2\vec{v_2}=m_2\vec{u_2}-\Delta{p}\cdot\mathbf{\vec{n}},\quad \Delta{p}=\dfrac{2m_1m_2\left(\vec{u_2}-\vec{u_1}\right)\cdot\mathbf{\vec{n}}}{m_1+m_2};$ where $\mathbf{\vec{n}}$ is the unit normal (direction of force);
Electromagnetism
Thermodynamics
Wave and Light
Geometrical optics
Fermat’s principle: the path taken by a ray between two given points is the path that takes the least time.
Reflection: $\theta_r=\theta_i,\quad \vec{r_r}=\vec{r_i}-\left(2\vec{r_i}\cdot\mathbf{\vec{n}}\right)\mathbf{\vec{n}};\quad$ where $\mathbf{\vec{n}}$ is the unit normal of reflection;
Refraction (Snell’s law):
$n_1\sin\theta_1=n_2\sin\theta_2;\quad$
where $n=\dfrac{c}{v}$ is the index of refraction,
$\vec{r_i}$ and $\vec{r_r}$ are unit vectors,
$\mathbf{\vec{n}}$ is the unit normal with $\vec{r_i}\cdot\mathbf{\vec{n}}\le0$;
A negative $k=\cos^2\left(\theta_r\right)$ indicates a total internal reflection;
Equations of ideal mirrors and lenses:
$\dfrac{1}{f}=\dfrac{1}{d_i}+\dfrac{1}{d_o},\quad
\dfrac{-h_i}{h_o}=\dfrac{d_i}{d_o}=-m;\quad$
$\left(d_i,h_i\right) = \dfrac{f}{d_o-f}\left(d_o,-h_o\right);\quad$
• For mirrors: $f$ is positive for concave mirrors,
a negative $d_i$ means behind the mirror;
• For lenses: $f$ is positive for converging lenses,
a negative $d_i$ means on the same side of the lens;
Wave basics
$f=\dfrac{1}{T},\;T=\dfrac{1}{f};\quad v=\dfrac{\lambda}{T}=f\lambda;\quad$ $\omega=\dfrac{2\pi}{T}=\dfrac{2\pi v}{\lambda},\; k=\dfrac{2\pi}{\lambda}=\dfrac{\omega}{v},\quad u=A\cos\left(\omega t\mp k\left(x-x_0\right)+\varphi\right);\quad$
Wave equation: $\dfrac{\partial^2u}{\partial t^2}=v^2\left(\dfrac{\partial^2u}{\partial x_1^2}+\dfrac{\partial^2u}{\partial x_2^2}+\cdots+\dfrac{\partial^2u}{\partial x_n^2}\right);\quad$ General solution to wave equation in one dimension: $u=C_1(x-vt)+C_2(x+vt);$
Speed of light in vacuum: $c=299\,792\,458\;m/s$; Speed of wave on a string: $v=\sqrt{\dfrac{T}{\mu}}$; Approximate speed of sound in air: $v=331.4m/s+(0.606m/s/℃)\cdot T_℃$;