WARNING: the correctness of these equations are to be determined.

List of moments of inertia

Description Length / Area / Volume Centroid /
Center of mass
Inertia tensor Additional notes
Mass change
Multiplying the density of a body by $s=\frac{m_1}{m_0}$.
Remain unchanged Remain unchanged $I_1=sI_0=I_0\dfrac{m_1}{m_0}$ For the rest of this table, assume the mass of the body remains unchanged after transformation.
Translation
Translating a body by displacement $d$.
Remain unchanged $C_1=C_0+d$ $I_1=I+m\left(d^Td\ \mathbf{I}-dd^T\right)+m\left(2C_0^Td\ \mathbf{I}-C_0d^T-dC_0^T\right)$

$C_0=\mathbf{0}$:  $I_1=I+m\left(d^Td\ \mathbf{I}-dd^T\right)$
$C_1=\mathbf{0}$:  $I_1=I-m\left(d^Td\ \mathbf{I}-dd^T\right)$
Bold $\mathbf{I}$ represents the 3×3 identity matrix.
Rotation about the origin
Representing rotation using orthogonal matrix $\mathbf{R}$ where the columns of $\mathbf{R}$ are $\vec{i}, \vec{j}, \vec{k}$ after rotation.
Remain unchanged $C_1=\mathbf{R}C_0$ $I_1=\mathbf{R}I_0\mathbf{R}^T$
Scaling
Scaling about the origin with factor $s>0$.
$L_1=L_0s\\A_1=A_0s^2\\V_1=V_0s^3$ $C_1=sC_0$ $I_1=s^2I_0$ If the density of the shape remains unchanged, then $I_1=s^3/s^4/s^5 \cdot I_0$.
Stretching
Scaling on unit axis $\mathbf{n}$ with a factor $s$.
For solids only:
$A_1=sA_0\\V_1=sV_0$
$C_1=C_0+(s-1)(C_0\cdot\mathbf{n})\mathbf{n}$
Reflection about xOy plane
Reversing the signs of $z$ components of points in a body.
Remain unchanged Reflected about xOy plane Remain unchanged
Reflection
Reflection about a plane through the origin with unit normal $\mathbf{n}.$
Remain unchanged $C_1=C_0-2(C_0\cdot\mathbf{n})\mathbf{n}$
Extrusion from 2D
Extruding a shape on xOy plane on both positive and negative directions of z-axis by length $h$. (the result is a cylinder with height $2h$.)
$S_1=2hL\\V_1=2hS$ Remain unchanged $I_1=I_0+\dfrac{1}{3}mh^2\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}$ $I_0$ is a 3×3 matrix calculated in 3D.
Reference rule 0. for mass change.
Description Length / Area / Volume Centroid /
Center of mass
Inertia tensor
Segment defined by endpoints $A$, $B$ $L=\left|B-A\right|$ $\dfrac{1}{2}\left(A+B\right)$ $\dfrac{1}{3}m\left[\left(A^TA+A^TB+B^TB\right)\mathbf{I}-\left(AA^T+BB^T+\dfrac{1}{2}\left(AB^T+BA^T\right)\right)\right]$
Triangle defined by the origin and vectors $\vec{a}$, $\vec{b}$ $A=\dfrac{1}{2}\left|a\times b\right|$ $\dfrac{1}{3}\left(a+b\right)$ $\dfrac{1}{6}m\left[\left(a^Ta+a^Tb+b^Tb\right)\mathbf{I}-\left(aa^T+bb^T+\dfrac{1}{2}\left(ab^T+ba^T\right)\right)\right]$
Triangle defined by vertices $A$, $B$, $C$ $A=\dfrac{1}{2}\left|\left(B-A\right)\times\left(C-A\right)\right|$ $\dfrac{1}{3}\left(A+B+C\right)$ $\dfrac{1}{6}m\left[\left(A^TA+B^TB+C^TC+A^TB+A^TC+B^TC\right)\mathbf{I}\\ -\left(AA^T+BB^T+CC^T+\dfrac{1}{2}\left(AB^T+AC^T+BA^T+BC^T+CA^T+CB^T\right)\right)\right]$
Parallelogram defined by point $p$ and vectors $a$, $b$ $A=\left|a\times b\right|$ $p+\dfrac{1}{2}a+\dfrac{1}{2}b$ $m\left[\left(p^Tp+\dfrac{1}{3}\left(a^Ta+b^Tb\right)+a^Tp+b^Tp+\dfrac{1}{2}a^Tb\right)\mathbf{I}\\ -\left(pp^T+\dfrac{1}{3}\left(aa^T+bb^T\right)+\dfrac{1}{2}\left(ap^T+pa^T+bp^T+pb^T\right)+\dfrac{1}{4}\left(ab^T+ba^T\right)\right)\right]$
Tetrahedron defined by the origin and vectors $a$, $b$, $c$ $V=\dfrac{1}{6}\det\left[a,b,c\right]$ $\dfrac{1}{4}\left(a+b+c\right)$ $\dfrac{1}{10}m\left[\left(a^Ta+b^Tb+c^Tc+a^Tb+a^Tc+b^Tc\right)\mathbf{I}\\ -\left(aa^T+bb^T+cc^T+\dfrac{1}{2}\left(ab^T+ac^T+ba^T+bc^T+ca^T+cb^T\right)\right)\right]$
Description Length / Area / Volume Moment of inertia / Inertia tensor Graph Additional notes
Rod $L=2r$ $m\begin{bmatrix}\frac{1}{3}r^2&0&0\\0&0&0\\0&0&\frac{1}{3}r^2\end{bmatrix}$ view(0.5, 0.5, 40); const l = 1.7; axis(-l, l, -l, l, -l, l); line([0,-1,0], [0,1,0], false, false, "stroke-width='5' stroke='gray'"); line([-0.3,0,0], [-0.3,1,0], true, true); lable([-0.3,0.5,0.1], "r"); $\dfrac{1}{3}r^2$ is equivalent to $\dfrac{1}{12}l^2$.
Disk $A=\pi r^2$ $m\begin{bmatrix}\frac{1}{4}r^2&0&0\\0&\frac{1}{4}r^2&0\\0&0&\frac{1}{2}r^2\end{bmatrix}$ view(0.5, 0.5, 50); circle([0,0,0], [1,0,0], [0,1,0], shaded); const l = 1.5; axis(-l, l, -l, l, -.9*l, .9*l); line([0,0,0], [0,1,0], true, true); lable([0,0.5,0.1], "r");
Ring $L=2\pi r$ $m\begin{bmatrix}\frac{1}{2}r^2&0&0\\0&\frac{1}{2}r^2&0\\0&0&r^2\end{bmatrix}$ view(0.5, 0.5, 50); const l = 1.5; axis(-l, l, -l, l, -.9*l, .9*l); circle([0,0,0], [1,0,0], [0,1,0], thickstroke); line([0,0,0], [0,1,0], true, true); lable([0,0.5,0.1], "r");
Ring with width $A=\pi(r_1^2-r_0^2)$ $\dfrac{1}{4}m(r_1^2+r_0^2)\begin{bmatrix}1&0&0\\0&1&0\\0&0&2\end{bmatrix}$ view(0.5, 0.5, 50); circle([0,0,0], [1.2,0,0], [0,1.2,0], shaded); circle([0,0,0], [0.7,0,0], [0,0.7,0], "fill='white'"); const l = 1.6; axis(-l, l, -l, l, -.8*l, .8*l); line([0,0,0], [0,0.7,0], true, true); lable([0,0.4,0.1], "r₀"); line([0,0,0], [0,-1.2,0], true, true); lable([0,-0.6,0.1], "r₁");
Sector $A=\alpha r^2$ $\dfrac{1}{4}mr^2\begin{bmatrix}1-\frac{\sin(2\alpha)}{2\alpha}&0&0\\0&1+\frac{\sin(2\alpha)}{2\alpha}&0\\0&0&2\end{bmatrix}$ view(0.5*PI, -0.5*PI, 60, [-0.4,0,0]); arc([0,0,0], [1,0,0], [0,1,0], -0.9, 0.9, true, false, shaded); axis(-0.6, 1.4, -1.0, 1.0, 0,0, [true,true,false], [true,true,false]); line([0,0,0], [1,0,0], true, true); lable([0.4,-0.25,0], "r"); arc([0,0,0],[0.3,0,0],[0,0.3,0],0,0.9); lable([0.3,0.15,0],"α"); $C=\left(\dfrac{2}{3}r\dfrac{\sin(\alpha)}{\alpha},0,0\right)$
Arc $L=2\alpha r$ $\dfrac{1}{2}mr^2\begin{bmatrix}1-\frac{\sin(2\alpha)}{2\alpha}&0&0\\0&1+\frac{\sin(2\alpha)}{2\alpha}&0\\0&0&2\end{bmatrix}$ view(0.5*PI, -0.5*PI, 60, [-0.4,0,0]); arc([0,0,0], [1,0,0], [0,1,0], -0.8, 0.8, false, false, thickstroke); axis(-0.6, 1.4, -1.0, 1.0, 0,0, [true,true,false], [true,true,false]); line([0,0,0], [1,0,0], true, true); lable([0.4,-0.25,0], "r"); line([0,0,0],[cos(0.8),sin(0.8),0],false,false,dashed); arc([0,0,0],[0.3,0,0],[0,0.3,0],0,0.8); lable([0.3,0.1,0],"α"); $C=\left(r\dfrac{\sin(\alpha)}{\alpha},0,0\right)$
Cylinder $V=2\pi r^2h$ $\dfrac{1}{12}m\begin{bmatrix}3r^2+4h^2&0&0\\0&3r^2+4h^2&0\\0&0&6r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.1]); var r = 0.75, h = 0.8; var cs = circleEdges([0,0,0],[r,0,0],[0,r,0]), cr=cs[0], cl=cs[1]; polyline([subv(cl,[0,0,h]),addv(cl,[0,0,h]),addv(cr,[0,0,h]),subv(cr,[0,0,h])], true, shaded); circle([0,0,-h], [r,0,0], [0,r,0], shaded); circle([0,0,h], [r,0,0], [0,r,0], shaded); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); line([0,0,0], cr, true,true); lable(addv(mulv(cr,0.5),[0,-0.1,0.1]),"r"); line(mulv(cr,1.2), addv(mulv(cr,1.2),[0,0,h]),true,true); lable(addv(mulv(cr,1.2),[0,0.2,.5*h]),"h"); The height of this cylinder is $2h$. For a cylinder with height $h$, change $4h^2$ in the inertia matrix to $h^2$.
Sphere $V=\dfrac{4}{3}\pi r^3$ $m\begin{bmatrix}\frac{2}{5}r^2&0&0\\0&\frac{2}{5}r^2&0\\0&0&\frac{2}{5}r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.2]); sphere([0,0,0], 0.9, shaded); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); line([0,0,0],[0,0,0.9],true,true); lable([0,0.2,0.4], "r");
Cone $V=\dfrac{1}{3}\pi r^2h$ $\dfrac{3}{20}m\begin{bmatrix}r^2+4h^2&0&0\\0&r^2+4h^2&0\\0&0&2r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0,0,-0.6]); var r = 0.8, h=1.2; var cs = coneEdges([0,0,0],[0,0,h],[r,0,0],[0,r,0]), cl = cs[0], cr = cs[1]; polyline([cl,[0,0,0],cr],true,shaded); circle([0,0,h],[r,0,0],[0,r,0],shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); line([0,0,0],[0,0,h],true,true); lable([0,0.1,0.4*h], "h"); line([0,0,h],cl,true,true); lable(addv(mulv(cl,.6),[0,0,.4*h]), "r", -5, -2); $C=\left(0,0,\dfrac{3}{4}\right)$
Right-oriented cone $V=\dfrac{1}{3}\pi r^2h$ $\dfrac{1}{20}m\begin{bmatrix}3r^2+2h^2&0&0\\0&3r^2+2h^2&0\\0&0&6r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0,0,-0.6]); var r = 0.8, h=1.4; var cs = coneEdges([0,0,h],[0,0,0],[r,0,0],[0,r,0]), cl=cs[0], cr=cs[1]; polyline([cl,[0,0,h],cr],false,shaded); // visually fine circle([0,0,0],[r,0,0],[0,r,0],shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); line([0,0,0],[0,0,h],true,true); lable([0,0.1,0.35*h], "h"); line([0,0,0],cl,true,true); lable(addv(mulv(cl,.6),[0,0,0.05]), "r", 5, 2); $C=\left(0,0,\dfrac{1}{4}h\right)$
Previous inertia subtracted by $m\begin{bmatrix}\frac{1}{2}h^2&0&0\\0&\frac{1}{2}h^2&0\\0&0&0\end{bmatrix}$
Cone at center of mass $V=\dfrac{1}{3}\pi r^2h$ $\dfrac{3}{80}m\begin{bmatrix}4r^2+h^2&0&0\\0&4r^2+h^2&0\\0&0&8r^2\end{bmatrix}$ view(0.5, .8, 50, [0,0,-0.4]); var r = 0.8, h=1.4; var cs = coneEdges([0,0,.75*h],[0,0,-.25*h],[r,0,0],[0,r,0]), cl=cs[0], cr=cs[1]; polyline([cl,[0,0,.75*h],cr],false,shaded); // visually fine circle([0,0,-.25*h],[r,0,0],[0,r,0],shaded); axis(0, 1.7, 0, 1.7, -0.3, 1.6); line([0,0,-.25*h],[0,0,.75*h],true,true); lable([0,0.1,0.05*h], "h",0, -5); line([0,0,-.25*h],cl,true,true); lable(addv(mulv(cl,.5),[0,0,-.125*h]), "r", -1, -1, 2); In the graph the cone has $z$ ranging from $-\frac{1}{4}h$ to $\frac{3}{4}h$.
Reflection on xOy plane does not change its inertia.
Truncated cone $V=\dfrac{1}{3}\pi r^2h_1(1-k^3)$ $\dfrac{3}{20}m\dfrac{1-k^5}{1-k^3}\begin{bmatrix}r^2+4h_1^2&0&0\\0&r^2+4h_1^2&0\\0&0&2r^2\end{bmatrix}$ $\frac{h_0}{h_1}=\frac{r_0}{r_1}=k$ view(0.4, .25*PI, 50, [0,0,-0.75]); var r1=0.8, h1=1.2, k=0.4, r0=k*r1, h0=k*h1; var cs1 = coneEdges([0,0,0],[0,0,h1],[r1,0,0],[0,r1,0]), cr1=cs1[0], cl1=cs1[1]; var cs0 = coneEdges([0,0,0],[0,0,h0],[r0,0,0],[0,r0,0]), cr0=cs0[0], cl0=cs0[1]; polyline([cl0,cl1,cr1,cr0],true,shaded); circle([0,0,h0],[r0,0,0],[0,r0,0],shaded); circle([0,0,h1],[r1,0,0],[0,r1,0],shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); cs1 = circleEdges([0,0,h1],[r1,0,0],[0,r1,0]), cr1=cs1[0], cl1=cs1[1]; cs0 = circleEdges([0,0,h0],[r0,0,0],[0,r0,0]), cr0=cs0[0], cl0=cs0[1]; var cr1proj = [cr1[0],cr1[1],0], cr0proj = mulv(cr1proj,k); line(mulv(cr1proj,-0.8),mulv(cr1proj,1.2), false, false, dashed); line(cr0proj,cr0,true,true); lable([cr0[0],cr0[1],0.5*cr0[2]], "h₀", 5, 0); line(cr1proj,cr1,true,true); lable([cr1[0],cr1[1],0.5*cr1[2]], "h₁", 5, 0); line([0,0,cl0[2]],cl0,false,false); lable([.5*cl0[0],.5*cl0[1],cl0[2]], "r₀", -7, -2); line([0,0,cl1[2]],cl1,true,true); lable([.5*cl1[0],.5*cl1[1],cl1[2]], "r₁", -5, -2); $C=\left(0,0,\dfrac{3}{4}h_1\dfrac{1-k^4}{1-k^3}\right)$
$k=\dfrac{h_0}{h_1}=\dfrac{r_0}{r_1}\in[0,1)$
Solid angle $V=\dfrac{2}{3}\pi r^3(1-c)$ $\dfrac{1}{10}mr^2\begin{bmatrix}c^2+c+4&0&0\\0&c^2+c+4&0\\0&0&-2(c^2+c-2)\end{bmatrix}$ $c=\cos(\alpha)$ // This graph may not be exact. view(0.1, .25*PI, 50, [0,0,-0.9]); var r = 0.8, h = 1.2; var cs = coneEdges([0,0,0],[0,0,h],[r,0,0],[0,r,0]), cr = cs[0], cl = cs[1]; polyline([cl,[0,0,0],cr],false,shaded); circle([0,0,h],[r,0,0],[0,r,0],shaded); cs = circleEdges([0,0,h],[r,0,0],[0,r,0]), cr = cs[0], cl = cs[1]; arc([0,0,0], cl, orthogonalize(cl,cr), 0, anglev(cl,cr), false, false, shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); var d=[0,0.2,0]; line(d,addv(cr,d),true,true); lable(addv(d,mulv(cr,0.5)), "r", 0, 10); d=[0,0,.3*sqrt(r*r+h*h)]; var d1=mulv(cl,.3); arc([0,0,0], d, orthogonalize(d,d1), 0, anglev(d,cl)); lable(d1, "α", -2, -5); $C=\left(0,0,\dfrac{3}{8}r(1+c)\right)$
Semi-sphere is a special case with $c=0$.
Torus $V=2\pi^2Rr^2$ $m\begin{bmatrix}\frac{1}{2}R^2+\frac{5}{8}r^2&0&0\\0&\frac{1}{2}R^2+\frac{5}{8}r^2&0\\0&0&R^2+\frac{3}{4}r^2\end{bmatrix}$ view(0.5, 0.6, 50); var R = 0.9, r = 0.28; torus(R, r, shaded + "fill-rule='evenodd'"); axis(-1.8, 1.8, -1.7, 1.7, -1.2, 1.2); line([0,0,0], [0,R,0], true, true); lable([0,0.5*R,0.1], "R", 0, 0, 2); line([0,R,0], [0,R+r,0], true, true); lable([0,R+0.5*r,0.1], "r", 0, 0, 2);
Planar ellipse $A=\pi ab$ $\dfrac{1}{4}m\begin{bmatrix}b^2&0&0\\0&a^2&0\\0&0&a^2+b^2\end{bmatrix}$ view(0.5, 0.5, 50); circle([0,0,0], [1.0,0,0], [0,1.2,0], shaded); axis(-1.5, 1.5, -1.6, 1.6, -1.4, 1.4); line([0,0,0], [0,1.2,0], true, true); lable([0,0.6,0.1], "b"); line([0,0,0], [1.0,0,0], true, true); lable([0.6,-0.3,0], "a");
Elliptical cylinder $A=2\pi abh$ $\dfrac{1}{12}m\begin{bmatrix}3b^2+4h^2&0&0\\0&3a^2+4h^2&0\\0&0&3a^2+3b^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.1]); var a = 0.6, b = 0.8, h = 0.8; var cs = circleEdges([0,0,0],[a,0,0],[0,b,0]), cr=cs[0], cl=cs[1]; polyline([subv(cl,[0,0,h]),addv(cl,[0,0,h]),addv(cr,[0,0,h]),subv(cr,[0,0,h])], true, shaded); circle([0,0,-h], [a,0,0], [0,b,0], shaded); circle([0,0,h], [a,0,0], [0,b,0], shaded); circle([0,0,0], [a,0,0], [0,b,0], dashed); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); line([0,0,0], [a,0,0], true,true); lable([0.5*a,0,0],"a",-8,-5); line([0,0,0],[0,b,0],true,true); lable([0,0.5*b,0],"b",-2,-2); line(mulv(cr,1.2), addv(mulv(cr,1.2),[0,0,h]),true,true); lable(addv(mulv(cr,1.2),[0,0.2,.5*h]),"h"); Change $4h^2$ to $h^2$ for a cylinder with height $h$.
Ellipsoid $V=\dfrac{4}{3}\pi abc$ $\dfrac{1}{5}m\begin{bmatrix}b^2+c^2&0&0\\0&a^2+c^2&0\\0&0&a^2+b^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.2]); var a=1.2,b=1.0,c=0.7; ellipsoid(a, b, c, shaded); const l = 1.8; axis(-.8*l, l, -.8*l, l, -.2*l, .8*l); line([0,0,0],[a,0,0],true,true); lable([0.5*a,0,0],"a",-6,-3); line([0,0,0],[0,b,0],true,true); lable([0,0.5*b,0],"b",0,-2); line([0,0,0],[0,0,c],true,true); lable([0,0,0.5*c],"c",2,4);
Elliptical cone $V=\dfrac{1}{3}\pi abh$ $\dfrac{3}{20}m\begin{bmatrix}b^2+4h^2&0&0\\0&a^2+4h^2&0\\0&0&a^2+b^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0,0,-0.6]); var a = 1.0, b=0.8, h=1.2; var cs = coneEdges([0,0,0],[0,0,h],[a,0,0],[0,b,0]), cl = cs[0], cr = cs[1]; polyline([cl,[0,0,0],cr],true,shaded); circle([0,0,h],[a,0,0],[0,b,0],shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); line([0,0,h],[a,0,h],true,true); lable([0.5*a,0,h], "a",-7,-3); line([0,0,h],[0,b,h],true,true); lable([0,0.5*b,h], "b",-2,-2); line([0,b,0],[0,b,h],true,true); lable([0,b+0.1,0.4*h], "h"); $C=\left(0,0,\dfrac{3}{4}h\right)$
Truncated elliptical cone $V=\dfrac{1}{3}\pi abh_1(1-k^3)$ $\dfrac{3}{20}m\dfrac{1-k^5}{1-k^3}\begin{bmatrix}b^2+4h_1^2&0&0\\0&a^2+4h_1^2&0\\0&0&a^2+b^2\end{bmatrix}$ $k=\frac{h_0}{h_1}$ view(0.4, .25*PI, 50, [0,0,-0.75]); var a=0.9, b=0.7, h1=1.2, k=0.5, h0=k*h1; var cs = coneEdges([0,0,0],[0,0,h1],[a,0,0],[0,b,0]); var cr1=cs[0], cl1=cs[1], cr0=mulv(cr1,k), cl0=mulv(cl1,k); polyline([cl0,cl1,cr1,cr0],true,shaded); circle([0,0,h0],[k*a,0,0],[0,k*b,0],shaded); circle([0,0,h1],[a,0,0],[0,b,0],shaded); axis(0, 1.6, 0, 1.6, -0.3, 1.9); line([0,k*b,0],[0,k*b,h0],true,true); lable([0,b,.5*h0], "h₀", 0, -2); line([a,0,0],[a,0,h1],true,true); lable([a+0.1, 0,.5*h1], "h₁", -15, 5); line([0,0,h1],[a,0,h1],true,true); lable([0.5*a,0,h1], "a", -6, -2); line([0,0,h1],[0,b,h1],true,true); lable([0,0.5*b,h1], "b", -2, -2); $C=\left(0,0,\dfrac{3}{4}h_1\dfrac{1-k^4}{1-k^3}\right)$
Cylindrical shell $A=4\pi rh$ $\dfrac{1}{6}m\begin{bmatrix}3r^2+2h^2&0&0\\0&3r^2+2h^2&0\\0&0&6r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.1]); var r = 0.75, h = 0.8; var cs = circleEdges([0,0,0],[r,0,0],[0,r,0]), cr=cs[0], cl=cs[1]; line(subv(cl,[0,0,h]),addv(cl,[0,0,h])); line(addv(cr,[0,0,h]),subv(cr,[0,0,h])); circle([0,0,h], [r,0,0], [0,r,0]); circle([0,0,-h], [r,0,0], [0,r,0]); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); line([0,0,0], cr, true,true); lable(addv(mulv(cr,0.5),[0,-0.1,0.1]),"r"); line(mulv(cr,1.2), addv(mulv(cr,1.2),[0,0,h]),true,true); lable(addv(mulv(cr,1.2),[0,0.2,.5*h]),"h"); Without bases
Spherical shell $A=4\pi r^2$ $m\begin{bmatrix}\frac{2}{3}r^2&0&0\\0&\frac{2}{3}r^2&0\\0&0&\frac{2}{3}r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.2]); sphere([0,0,0], 0.9); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); line([0,0,0],[0,0,0.9],true,true); lable([0,0.2,0.4], "r");
Conical shell $A=\pi r\sqrt{r^2+h^2}$ $\dfrac{1}{4}m\begin{bmatrix}r^2+2h^2&0&0\\0&r^2+2h^2&0\\0&0&2r^2\end{bmatrix}$ view(0.4, .25*PI, 50, [0,0,-0.6]); var r = 0.8, h=1.2; var cs = coneEdges([0,0,0],[0,0,h],[r,0,0],[0,r,0]), cl = cs[0], cr = cs[1]; polyline([cl,[0,0,0],cr],false); circle([0,0,h],[r,0,0],[0,r,0]); axis(0, 1.6, 0, 1.6, -0.3, 1.9); line([0,0,0],[0,0,h],true,true); lable([0,0.1,0.4*h], "h"); line([0,0,h],cl,true,true); lable(addv(mulv(cl,.6),[0,0,.4*h]), "r", -5, -2); Without base

$C=\left(0,0,\dfrac{2}{3}h\right)$
Conical shell at center of mass $A=\pi r\sqrt{r^2+h^2}$ $\dfrac{1}{36}m\begin{bmatrix}9r^2+2h^2&0&0\\0&9r^2+2h^2&0\\0&0&18r^2\end{bmatrix}$ view(0.4, 0.8, 50, [0,0,-0.3]); var r = 0.8, h=1.5; var cs = coneEdges([0,0,2/3*h],[0,0,-1/3*h],[r,0,0],[0,r,0]), cl = cs[0], cr = cs[1]; polyline([cl,[0,0,2/3*h],cr],false); circle([0,0,-1/3*h],[r,0,0],[0,r,0]); axis(0, 1.7, 0, 1.7, -0.3, 1.6); line([0,0,-1/3*h],[0,0,2/3*h],true,true); lable([0,0.1,1/6*h], "h",0,5); line([0,0,-1/3*h],cl,true,true); lable(addv(mulv(cl,.6),[0,0,-1./3*h]), "r", 2,-18,2); In the graph the cone has $z$ ranging from $-\frac{1}{3}h$ to $\frac{2}{3}h$.
Reflection on xOy plane does not change its inertia.
Truncated spherical shell $A=2\pi r^2(1-c)$ $\dfrac{1}{6}mr^2\begin{bmatrix}c^2+c+4&0&0\\0&c^2+c+4&0\\0&0&-2(c^2+c-2)\end{bmatrix}$ $c=\cos(\alpha)$ view(0.1, .25*PI, 50, [0,0,-0.9]); var r = 0.8, h = 1.2; var cs = coneEdges([0,0,0],[0,0,h],[r,0,0],[0,r,0]), cr = cs[0], cl = cs[1]; polyline([cl,[0,0,0],cr],false,dashed); circle([0,0,h],[r,0,0],[0,r,0]); cs = circleEdges([0,0,h],[r,0,0],[0,r,0]), cr = cs[0], cl = cs[1]; arc([0,0,0], cl, orthogonalize(cl,cr), 0, anglev(cl,cr), false, false); axis(0, 1.6, 0, 1.6, -0.3, 1.9); var d=[0,0.2,0]; line(d,addv(cr,d),true,true); lable(addv(d,mulv(cr,0.5)), "r", 0, 10); d=[0,0,.3*sqrt(r*r+h*h)]; var d1=mulv(cl,.3); arc([0,0,0], d, orthogonalize(d,d1), 0, anglev(d,cl)); lable(d1, "α", -2, -5); $C=\left(0,0,\dfrac{1}{2}r(1+c)\right)$
Semi-sphere is a special case with $c=0$.
Truncated conical shell $A=\pi r_1\sqrt{r_1^2+h_1^2}\cdot(1-k^2)$ $\dfrac{1}{4}m(1+k^2)\begin{bmatrix}r_1^2+2h_1^2&0&0\\0&r_1^2+2h_1^2&0\\0&0&2r_1^2\end{bmatrix}$ $\frac{h_0}{h_1}=\frac{r_0}{r_1}=k$ view(0.4, .25*PI, 50, [0,0,-0.75]); var r1=0.8, h1=1.2, k=0.4, r0=k*r1, h0=k*h1; var cs1 = coneEdges([0,0,0],[0,0,h1],[r1,0,0],[0,r1,0]), cr1=cs1[0], cl1=cs1[1]; var cs0 = coneEdges([0,0,0],[0,0,h0],[r0,0,0],[0,r0,0]), cr0=cs0[0], cl0=cs0[1]; line(cl0,cl1); line(cr0,cr1); circle([0,0,h0],[r0,0,0],[0,r0,0]); circle([0,0,h1],[r1,0,0],[0,r1,0]); axis(0, 1.6, 0, 1.6, -0.3, 1.9); cs1 = circleEdges([0,0,h1],[r1,0,0],[0,r1,0]), cr1=cs1[0], cl1=cs1[1]; cs0 = circleEdges([0,0,h0],[r0,0,0],[0,r0,0]), cr0=cs0[0], cl0=cs0[1]; var cr1proj = [cr1[0],cr1[1],0], cr0proj = mulv(cr1proj,k); line(mulv(cr1proj,-0.8),mulv(cr1proj,1.2), false, false, dashed); line(cr0proj,cr0,true,true); lable([cr0[0],cr0[1],0.5*cr0[2]], "h₀", 5, 0); line(cr1proj,cr1,true,true); lable([cr1[0],cr1[1],0.5*cr1[2]], "h₁", 5, 0); line([0,0,cl0[2]],cl0,false,false); lable([.5*cl0[0],.5*cl0[1],cl0[2]], "r₀", -7, -2); line([0,0,cl1[2]],cl1,true,true); lable([.5*cl1[0],.5*cl1[1],cl1[2]], "r₁", -5, -2); Without bases

$C=\left(0,0,\dfrac{2}{3}h_1\dfrac{1-k^3}{1-k^2}\right)$
Toric shell $A=4\pi^2Rr$ $m\begin{bmatrix}\frac{1}{2}R^2+\frac{5}{4}r^2&0&0\\0&\frac{1}{2}R^2+\frac{5}{4}r^2&0\\0&0&R^2+\frac{3}{2}r^2\end{bmatrix}$ view(0.5, 0.6, 50); var R = 0.9, r = 0.28; torus(R, r); axis(-1.8, 1.8, -1.7, 1.7, -1.2, 1.2); line([0,0,0], [0,R,0], true, true); lable([0,0.5*R,0.1], "R", 0, 0, 2); line([0,R,0], [0,R+r,0], true, true); lable([0,R+0.5*r,0.1], "r", 0, 0, 2);
Cylindrical shell with thickness $V=2\pi(r_1^2-r_0^2)h$ $\overline{r^2}=r_1^2+r_0^2$
$\dfrac{1}{12}m\begin{bmatrix}3\overline{r^2}+4h^2&0&0\\0&3\overline{r^2}+4h^2&0\\0&0&6\overline{r^2}\end{bmatrix}$
view(0.4, .25*PI, 50, [0, 0, -0.1]); var r1 = 0.9, r0 = 0.5, h = 0.8; var cs = circleEdges([0,0,0],[r1,0,0],[0,r1,0]), cr=cs[0], cl=cs[1]; polyline([subv(cl,[0,0,h]),addv(cl,[0,0,h]),addv(cr,[0,0,h]),subv(cr,[0,0,h])], true, shaded); circle([0,0,h], [r1,0,0], [0,r1,0], shaded); circle([0,0,-h], [r1,0,0], [0,r1,0], shaded); line(mulv(cr,1.2), addv(mulv(cr,1.2),[0,0,h]),true,true); lable(addv(mulv(cr,1.2),[0,0.2,.5*h]),"h"); line([0,0,0], negv(cr), true,true); lable(addv(mulv(negv(cr),0.5),[0,-0.1,0.1]),"r₁",0,0,2); cs = circleEdges([0,0,0],[r0,0,0],[0,r0,0]), cr=cs[0], cl=cs[1]; line(subv(cl,[0,0,h]),addv(cl,[0,0,h]),false,false); line(subv(cr,[0,0,h]),addv(cr,[0,0,h]),false,false); circle([0,0,h], [r0,0,0], [0,r0,0]); circle([0,0,-h], [r0,0,0], [0,r0,0]); line([0,0,0], cr, true,true); lable(addv(mulv(cr,0.5),[0,-0.1,0.1]),"r₀"); const l = 2.0; axis(0, l, 0, l, -.15*l, .75*l); Change $4h^2$ in the inertia matrix to $h^2$ for a cylinder with height $h$.
Spherical shell with thickness $V=\dfrac{4}{3}\pi(r_1^3-r_0^3)$ $\dfrac{2}{5}m\dfrac{r_1^5-r_0^5}{r_1^3-r_0^3}\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$ view(0.4, .25*PI, 50, [0, 0, -0.2]); sphere([0,0,0], 0.9, shaded); sphere([0,0,0], 0.5, "fill='white'"); const l = 1.8; axis(0, l, 0, l, -.2*l, .8*l); var cs = circleEdges([0,0,0],[0.9,0,0],[0,0.9,0])[0]; line([0,0,0],cs,true,true); lable(mulv(cs,0.5), "r₁", -5,-5,2); cs = circleEdges([0,0,0],[0.5,0,0],[0,0.5,0])[1]; line([0,0,0],cs,true,true); lable(mulv(cs,0.5), "r₀", -5,-5);
Toric shell with thickness $V=2\pi^2R(r_1^2-r_0^2)$ $\overline{r^2}=r_1^2+r_0^2$
$m\begin{bmatrix}\frac{1}{2}R^2+\frac{5}{8}\overline{r^2}&0&0\\0&\frac{1}{2}R^2+\frac{5}{8}\overline{r^2}&0\\0&0&R^2+\frac{3}{4}\overline{r^2}\end{bmatrix}$
view(0.5, 0.6, 50); var R = 0.9, r1 = 0.28, r0 = 0.1; var s = torus(R, r1, '', true) + torus(R, r0, '', true); G += "<path d='" + s + "' " + shaded + "fill-rule='evenodd' />"; axis(-1.8, 1.8, -1.7, 1.7, -1.2, 1.2); line([0,0,0], [0,R,0], true, true); lable([0,0.5*R,0.1], "R", -5, 0, 2); line([0,R,0], [0,R+r1,0], true, true); $r_0$ and $r_1$ are inner and outer minor radiuses.
Description Length / Area / Volume Moment of inertia / Inertia tensor Graph Additional notes
Square $A=4a^2$ $m\begin{bmatrix}\frac{1}{3}a^2&0&0\\0&\frac{1}{3}a^2&0\\0&0&\frac{2}{3}a^2\end{bmatrix}$
Rectangle $A=4ab$ $\dfrac{1}{3}m\begin{bmatrix}b^2&0&0\\0&a^2&0\\0&0&a^2+b^2\end{bmatrix}$
Rectangle border $L=4a+4b$ $m\begin{bmatrix}\frac{b^2(a+\frac{1}{3}b)}{a+b}&0&0\\0&\frac{a^2(a+\frac{1}{3}b)}{a+b}&0\\0&0&\frac{1}{3}(a+b)^2\end{bmatrix}$
Equilateral triangle $A=\dfrac{3\sqrt{3}}{4}a^2$ $\dfrac{5}{24}mr^2\begin{bmatrix}1&0&0\\0&1&0\\0&0&2\end{bmatrix}$
Regular polygon $A=\dfrac{1}{2}r^2N\sin\left(\dfrac{2\pi}{N}\right)$ $\dfrac{1}{12}mr^2\left(2+\cos\left(\dfrac{2\pi}{N}\right)\right)\begin{bmatrix}1&0&0\\0&1&0\\0&0&2\end{bmatrix}$
Regular polygon border $L=N\sqrt{r^2+1-2r\cos\left(\dfrac{2\pi}{N}\right)}$ $\dfrac{1}{6}mr^2\left(2+\cos\left(\dfrac{2\pi}{N}\right)\right)\begin{bmatrix}1&0&0\\0&1&0\\0&0&2\end{bmatrix}$
Cube $V=8a^3$ $m\begin{bmatrix}\frac{2}{3}a^2&0&0\\0&\frac{2}{3}a^2&0\\0&0&\frac{2}{3}a^2\end{bmatrix}$
Box (cuboid) $V=8abc$ $\dfrac{1}{3}m\begin{bmatrix}b^2+c^2&0&0\\0&a^2+c^2&0\\0&0&a^2+b^2\end{bmatrix}$
Cube shell $A=24a^2$ $\dfrac{10}{9}ma^2\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$
Box shell $A=8(ab+ac+bc)$ $\dfrac{5}{9}m\begin{bmatrix}b^2+c^2&0&0\\0&a^2+c^2&0\\0&0&a^2+b^2\end{bmatrix}$
Cube shell with thickness $V=8(a_1^3-a_0^3)$ $\dfrac{2}{3}m\dfrac{a_1^5-a_0^5}{a_1^3-a_0^3}\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$

Additional notes

Most integrations are done manually and checked numerically.

Formulas are rendered with MathJax. A script has been used to generate latex. Graphs are generated with Javascript.

Please check my math and English.